243 research outputs found

    Practices of Market Making for Sustaining Electronic Auction

    Get PDF
    This article examines how technology may be used continuously in organizations. Particularly, it investigates the organizing practices that support continuous technology-use. Exploring such organizing practices is meaningful because they could sustain ongoing organizational innovation. A field study on the enterprise application of e-auction (electronic auction, or otherwise known as online reverse auction and electronic bidding) is used to illustrate how a marketplace is effectively maintained over a span of seven years. Our findings identify a set of market-making practices and its principles that underscore sustained use of e-auction. This research contributes to literature on technology-use and adoption, as well as adds to studies on the electronic marketplace. It also offers practical lessons to implementers who seek to adopt the e-auction to achieve significant cost-savings and streamline the supply chain

    THE USE OF MANDAMUS TO COMPEL EDUCATIONAL INSTITUTIONS TO CONFER DEGREES

    Get PDF
    Hispolon is an active phenolic compound of <i>Phellinus igniarius</i>, a mushroom that was recently shown to have antioxidant and anticancer activities in various solid tumors. Here, the molecular mechanisms by which hispolon exerts anticancer effects in acute myeloid leukemia (AML) cells was investigated. The results showed that hispolon suppressed cell proliferation in the various AML cell lines. Furthermore, hispolon effectively induced apoptosis of HL-60 AML cells through caspases-8, -9, and -3 activations and PARP cleavage. Moreover, treatment of HL-60 cells with hispolon induced sustained activation of JNK1/2, and inhibition of JNK by JNK1/2 inhibitor or JNK1/2-specific siRNA significantly abolished the hispolon-induced activation of the caspase-8/-9/-3. In vivo, hispolon significantly reduced tumor growth in mice with HL-60 tumor xenografts. In hispolon-treated tumors, activation of caspase-3 and a decrease in Ki67-positive cells were observed. Our results indicated that hispolon may have the potential to serve as a therapeutic tool to treat AML

    Impact of ovarian preservation in women with endometrial cancer

    Get PDF
    AbstractBackgroundBilateral salpingo-oophorectomy (BSO) is standardly performed in the treatment of endometrial cancer. The purpose of this study was to evaluate the impact of ovarian preservation on the outcome of patients with endometrial cancer.MethodsA retrospective cohort study was performed using the 2000–2010 database of endometrial cancer patients who were treated at Taipei Veterans General Hospital. Information regarding patient age, pathologic reports, and follow-up results was abstracted from medical records.ResultsFive hundred and twenty-nine patients were reviewed in this study. Mean age and follow-up duration were 55.7 ± 11.4 years and 37.5 ± 30.1 months, respectively. The median disease-free survival was 31.2 months (range 0.2–126.9 months). There were no significant differences in disease-free survival between stage I patients with ovarian preservation versus those with oophorectomy (p = 0.473). In a multivariate Cox model, ovarian preservation had no effect on disease-free survival [hazard ratio (HR) = 2.72; 95% confidence interval (CI), 0.48–15.59]; however, it was not significantly related to stage and para-aortic lymph node involvement.ConclusionOvarian preservation may be considered in premenopausal women with early-stage low-risk endometrial cancer

    Triggering Apoptotic Death of Human Malignant Melanoma A375.S2 Cells by Bufalin: Involvement of Caspase Cascade-Dependent and Independent Mitochondrial Signaling Pathways

    Get PDF
    Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨm), intracellular Ca2+ release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨm and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways

    Comparison of single-incision mini-slings (Ajust) and standard transobturator midurethral slings (Align) in the management of female stress urinary incontinence: A 1-year follow-up

    Get PDF
    AbstractObjectiveTo investigate the effectiveness and safety of a new single-incision mini-sling (SIMS)—Ajust—compared with the standard transobturator midurethral sling (SMUS)—Align—for the treatment of female stress urinary incontinence (SUI).Materials and MethodsA retrospective cohort study was conducted between January 1, 2010 and August 31, 2012. Women with SUI who underwent either SMUS-Align or SIMS-Ajust were recruited. The primary outcomes included operation time, estimated operative blood loss, postoperative pain, and complications. The secondary outcomes included subjective and objective success, defined as an International Consultation on Incontinence Questionnaire (ICIQ) score of 0 or improvement as felt by the patient and a long-term complication, such as dyspareunia and mesh erosion after 6 months and 12 months of follow-up.ResultsA total of 136 patients were enrolled, including 76 receiving SMUS-Align and 60 receiving SIMS-Ajust. Baseline characteristics of the patients in both groups were similar, without a statistically significant difference. Primary outcomes between both groups were similar, except that women treated with SIMS-Ajust had statistically significantly shorter operation time (p = 0.003), less intent to treat (p < 0.05), and earlier postoperative discharge (p = 0.001) than women treated with SMUS-Align. Secondary outcomes were similar without a significant difference between the two groups (93% vs. 88% success rate in each group).ConclusionOur results showed that SIMS-Ajust was not inferior to SMUS-Align with respect to success rate, and might have a slight advantage in early discharge. A long-term follow-up or prospective study is needed to confirm the above findings

    Induction of Cellular Senescence by Doxorubicin Is Associated with Upregulated miR-375 and Induction of Autophagy in K562 Cells

    Get PDF
    BACKGROUND: Cellular senescence is a specialized form of growth arrest that is generally irreversible. Upregulated p16, p53, and p21 expression and silencing of E2F target genes have been characterized to promote the establishment of senescence. It can be further aided by the transcriptional repression of proliferation-associated genes by the action of HP1γ, HMGA, and DNMT proteins to produce a repressive chromatin environment. Therefore, senescence has been suggested to functions as a natural brake for tumor development and plays a critical role in tumor suppression and aging. METHODOLOGY/PRINCIPAL FINDINGS: An in vitro senescence model has been established by using K562 cells treated with 50 nM doxorubicin (DOX). Since p53 and p16 are homozygously deleted in the K562 cells, the DOX-induced senescence in K562 cells ought to be independent of p53 and p16-pRb pathways. Indeed, no change in the expression of the typical senescence-associated premalignant cell markers in the DOX-induced senescent K562 cells was found. MicroRNA profiling revealed upregulated miR-375 in DOX-induced senescent K562 cells. Treatment with miR-375 inhibitor was able to reverse the proliferation ability suppressed by DOX (p<0.05) and overexpression of miR-375 suppressed the normal proliferation of K562 cells. Upregulated miR-375 expression was associated with downregulated expression of 14-3-3zeta and SP1 genes. Autophagy was also investigated since DOX treatment was able to induce cells entering senescence and eventually lead to cell death. Among the 24 human autophagy-related genes examined, a 12-fold increase of ATG9B at day 4 and a 20-fold increase of ATG18 at day 2 after DOX treatment were noted. CONCLUSIONS/SIGNIFICANCE: This study has demonstrated that in the absence of p53 and p16, the induction of senescence by DOX was associated with upregulation of miR-375 and autophagy initiation. The anti-proliferative function of miR-375 is possibly exerted, at least in part, by targeting 14-3-3zeta and SP1 genes

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore