29 research outputs found

    Host response to influenza virus: Protection versus immunopathology

    No full text
    Host responses play crucial roles in defense against influenza but sometimes these may contribute to immunopathology. Potentially, this may be more important in disease caused by viruses such as avian influenza A H5N1 or the 1918 H1N1 influenza virus rather than with seasonal influenza or pandemic H1N1 2009 (pdmH1N1). Understanding pathogenesis will help develop novel therapeutic options that minimize immunopathology without impairing beneficial host defenses. © 2010 Elsevier Ltd.link_to_OA_fulltex

    Acute effects of Tai Chi training on cognitive and cardiovascular responses in late middle-aged adults : a pilot study

    No full text
    2017-2018 > Academic research: refereed > Publication in refereed journal201808 bcrcVersion of RecordPublishe

    Induction of proinflammatory cytokines in primary human macrophages by influenza A virus (H5N1) is selectively regulated by IFN regulatory factor 3 and p38 MAPK

    Get PDF
    The hyperinduction of proinflammatory cytokines and chemokines such as TNF-α, IFN-β, and CCL2/MCP-1 in primary human macrophages and respiratory epithelial cells by the highly pathogenic avian influenza H5N1 is believed to contribute to the unusual severity of human H5N1 disease. Here we show that TNF-α, IFN-β, and IFN-λ1 are the key mediators directly induced by the H5N1 virus in primary human macrophages. In comparison with human influenza (H1N1), the H5N1 virus more strongly activated IFN regulatory factor 3 (IRF3). IRF3 knockdown and p38 kinase inhibition separately and in combination led to a substantial reduction of IFN-β, IFN-λ1, and MCP-1 but only to a partial reduction of TNF-α. IRF3 translocation was independent of p38 kinase activity, indicating that IRF3 and p38 kinase are distinct pathways leading to cytokine production by H5N1 virus. We conclude that IRF3 and p38 kinase separately and predominantly contribute to H5N1-mediated induction of IFN-β, IFN-λ1, and MCP-1 but only partly control TNF-α induction. A more precise identification of the differences in the regulation of TNF-α and IFN-β could provide novel targets for the design of therapeutic strategies for severe human H5N1 influenza and also for treating other causes of acute respiratory distress syndrome. Copyright © 2009 by The American Association of Immunologists, Inc.link_to_subscribed_fulltex

    Induction of proinflammatory cytokines in primary human macrophages by influenza A virus (H5N1) is selectively regulated by IFN regulatory factor 3 and p38 MAPK

    No full text
    The hyperinduction of proinflammatory cytokines and chemokines such as TNF-α, IFN-β, and CCL2/MCP-1 in primary human macrophages and respiratory epithelial cells by the highly pathogenic avian influenza H5N1 is believed to contribute to the unusual severity of human H5N1 disease. Here we show that TNF-α, IFN-β, and IFN-λ1 are the key mediators directly induced by the H5N1 virus in primary human macrophages. In comparison with human influenza (H1N1), the H5N1 virus more strongly activated IFN regulatory factor 3 (IRF3). IRF3 knockdown and p38 kinase inhibition separately and in combination led to a substantial reduction of IFN-β, IFN-λ1, and MCP-1 but only to a partial reduction of TNF-α. IRF3 translocation was independent of p38 kinase activity, indicating that IRF3 and p38 kinase are distinct pathways leading to cytokine production by H5N1 virus. We conclude that IRF3 and p38 kinase separately and predominantly contribute to H5N1-mediated induction of IFN-β, IFN-λ1, and MCP-1 but only partly control TNF-α induction. A more precise identification of the differences in the regulation of TNF-α and IFN-β could provide novel targets for the design of therapeutic strategies for severe human H5N1 influenza and also for treating other causes of acute respiratory distress syndrome. Copyright © 2009 by The American Association of Immunologists, Inc.link_to_subscribed_fulltex

    H5N1 virus causes significant perturbations in host proteome very early in influenza virus-infected primary human monocyte-derived macrophages

    No full text
    H5N1 influenza viruses, which cause disease in humans, have unusually high pathogenicity. The temporal response of primary human monocyte-derived macrophages infected with highly pathogenic H5N1 and seasonal H1N1 influenza viruses was evaluated using mass spectrometry-based quantitative proteomic profiling. This was done in order to demonstrate significant perturbation of the host proteome upon viral infection, as early as 1 hour after infection. This early host response distinguished H5N1 infection from H1N1 infection, the latter inducing less of a response. The most pronounced effect was observed on the translational machinery, suggesting that H5N1 might gain advantage in replication by using the cell protein synthesis machinery early in the infection. © The Author 2012.link_to_subscribed_fulltex

    COVID-19: organoids go viral

    No full text

    H5N1 influenza virus-induced mediators upregulate RIG-I in uninfected cells by paracrine effects contributing to amplified cytokine cascades

    No full text
    Highly pathogenic avian influenza H5N1 viruses cause severe disease in humans, and dysregulation of cytokine responses is believed to contribute to the pathogenesis of human H5N1 disease. However, mechanisms leading to the increased induction of proinflammatory cytokines by H5N1 viruses are poorly understood. We show that the innate sensing receptor RIG-I is involved in interferon regulatory factor 3 (IRF3), NF-κB nuclear translocation, p38 activation, and the subsequent interferon (IFN) β, IFN-λ1, and tumor necrosis factor α induction during H5N1 infection. Soluble mediators from H5N1-infected human macrophages upregulate RIG-I, MDA5, and TLR3 to much higher levels than those from seasonal H1N1 in uninfected human macrophages and alveolar epithelial cells via paracrine IFNAR1/JAK but not IFN-λ receptor signaling. Compared with H1N1 virus-induced mediators, H5N1 mediators markedly enhance the cytokine response to PolyIC and to both seasonal and H5N1 virus infection in a RIG-I-dependent manner. Thus, sensitizing neighboring cells by upregulation of RIG-I contributes to the amplified cytokine cascades during H5N1 infection. © 2011 The Author.link_to_OA_fulltex

    Hyperinduction of cyclooxygenase-2-mediated proinflammatory cascade: A mechanism for the pathogenesis of avian influenza H5N1 infection

    No full text
    The mechanism for the pathogenesis of H5N1 infection in humans remains unclear. This study reveals that cyclooxygenase-2 (COX-2) was strongly induced in H5N1-infected macrophages in vitro and in epithelial cells of lung tissue samples obtained during autopsy of patients who died of H5N1 disease. Novel findings demonstrated that COX-2, along with tumor necrosis factor α and other proinflammatory cytokines were hyperinduced in epithelial cells by secretory factors from H5N1-infected macrophages in vitro. This amplification of the proinflammatory response is rapid, and the effects elicited by the H5N1-triggered proinflammatory cascade are broader than those arising from direct viral infection. Furthermore, selective COX-2 inhibitors suppress the hyperinduction of cytokines in the proinflammatory cascade, indicating a regulatory role for COX-2 in the H5N1-hyperinduced host proinflammatory cascade. These data provide a basis for the possible development of novel therapeutic interventions for the treatment of H5N1 disease, as adjuncts to antiviral drugs. © 2008 by the Infectious Diseases Society of America. All rights reserved.link_to_subscribed_fulltex
    corecore