107 research outputs found
Heat shock transcription factor 1 preserves cardiac angiogenesis and adaptation during pressure overload
To examine how heat shock transcription factor 1 (HSF1) protects against maladaptive hypertrophy during pressure overload, we subjected HSF1 transgenic (TG), knockout (KO) and wild type (WT) mice to a constriction of transverse aorta (TAC), and found that cardiac hypertrophy, functions and angiogenesis were well preserved in TG mice but were decreased in KO mice compared to WT ones at 4 weeks, which was related to HIF-1 and p53 expression. Inhibition of angiogenesis suppressed cardiac adaptation in TG mice while overexpression of angiogenesis factors improved maladaptive hypertrophy in KO mice. In vitro formation of vasculatures by microvascular endothelial cells was higher in TG mice but lower in KO mice than in WT ones. A siRNA of p53 but not a HIF-1 gene significantly reversed maladaptive hypertrophy in KO mice whereas a siRNA of HIF-1 but not a p53 gene induced maladaptive hypertrophy in TG mice. Heart microRNA analysis showed that miR-378 and miR-379 were differently changed among the three mice after TAC, and miR-378 or siRNA of miR-379 could maintain cardiac adaptation in WT mice. These results indicate that HSF1 preserves cardiac adaptation during pressure overload through p53-HIF-1-associated angiogenesis, which is controlled by miR-378 and miR-379
Crab in Amber Reveals an Early Colonization of Nonmarine Environments During the Cretaceous
Amber fossils provide snapshots of the anatomy, biology, and ecology of extinct organisms that are otherwise inaccessible. The best-known fossils in amber are terrestrial arthropods—principally insects—whereas aquatic organisms are rarely represented. Here, we present the first record of true crabs (Brachyura) in amber—from the Cretaceous of Myanmar [~100 to 99 million years (Ma)]. The new fossil preserves large compound eyes, delicate mouthparts, and even gills. This modern-looking crab is nested within crown Eubrachyura, or “higher” true crabs, which includes the majority of brachyuran species living today. The fossil appears to have been trapped in a brackish or freshwater setting near a coastal to fluvio-estuarine environment, bridging the gap between the predicted molecular divergence of nonmarine crabs (~130 Ma) and their younger fossil record (latest Cretaceous and Paleogene, ~75 to 50 Ma) while providing a reliable calibration point for molecular divergence time estimates for higher crown eubrachyurans
AngiotensinII Preconditioning Promotes Angiogenesis In Vitro via ERKs Phosphorylation
AngiotensinII (AngII) is involved in not only the formation of cardiac hypertrophy but also the development of cardiac remodeling both of which are associated with myocardial angiogenesis. This study was therefore performed to clarify the effects of AngII on the formation of vasculatures by cultured cardiac microvascular endothelial cells (CMVECs) after a long-period stimulation with or without the AngII preconditioning. Incubation with AngII for 18 hrs significantly impaired the formation of capillary-like tubes comparing to that without AngII. CMVECs with AngII pretreatment for 5 and 10 min formed more capillary-like tubes than those without AngII pretreatment, suggesting that preconditioning with AngII at a lower dose for a short period could prevent the further damage of CMVECs by a higher concentration of AngII. Moreover, AngII (10−7 M) stimulation for 5 and 10 min significantly induced the increase in extracellular signal-regulated protein kinases (ERKs) phosphorylation, and an ERKs inhibitor, PD98059, abrogated the increase in the formation of capillary-like tubes induced by the AngII-pretreatment. In conclusion, preconditioning with a lower concentration of AngII for a short period prevents the subsequent impairment of CMVECs by a higher dose of AngII, at least in part, through the increase in ERKs phosphorylation
Full-dose PET Synthesis from Low-dose PET Using High-efficiency Diffusion Denoising Probabilistic Model
To reduce the risks associated with ionizing radiation, a reduction of
radiation exposure in PET imaging is needed. However, this leads to a
detrimental effect on image contrast and quantification. High-quality PET
images synthesized from low-dose data offer a solution to reduce radiation
exposure. We introduce a diffusion-model-based approach for estimating
full-dose PET images from low-dose ones: the PET Consistency Model (PET-CM)
yielding synthetic quality comparable to state-of-the-art diffusion-based
synthesis models, but with greater efficiency. There are two steps: a forward
process that adds Gaussian noise to a full dose PET image at multiple
timesteps, and a reverse diffusion process that employs a PET Shifted-window
Vision Transformer (PET-VIT) network to learn the denoising procedure
conditioned on the corresponding low-dose PETs. In PET-CM, the reverse process
learns a consistency function for direct denoising of Gaussian noise to a clean
full-dose PET. We evaluated the PET-CM in generating full-dose images using
only 1/8 and 1/4 of the standard PET dose. Comparing 1/8 dose to full-dose
images, PET-CM demonstrated impressive performance with normalized mean
absolute error (NMAE) of 1.233+/-0.131%, peak signal-to-noise ratio (PSNR) of
33.915+/-0.933dB, structural similarity index (SSIM) of 0.964+/-0.009, and
normalized cross-correlation (NCC) of 0.968+/-0.011, with an average generation
time of 62 seconds per patient. This is a significant improvement compared to
the state-of-the-art diffusion-based model with PET-CM reaching this result 12x
faster. In the 1/4 dose to full-dose image experiments, PET-CM is also
competitive, achieving an NMAE 1.058+/-0.092%, PSNR of 35.548+/-0.805dB, SSIM
of 0.978+/-0.005, and NCC 0.981+/-0.007 The results indicate promising low-dose
PET image quality improvements for clinical applications
Fe-assisted epitaxial growth of 4-inch single-crystal transition-metal dichalcogenides on c-plane sapphire without miscut angle
Epitaxial growth and controllable doping of wafer-scale single-crystal
transition-metal dichalcogenides (TMDCs) are two central tasks for extending
Moore's law beyond silicon. However, despite considerable efforts, addressing
such crucial issues simultaneously under two-dimensional (2D) confinement is
yet to be realized. Here we design an ingenious epitaxial strategy to
synthesize record-breaking 4-inch single-crystal Fe-doped TMDCs monolayers on
industry-compatible c-plane sapphire without miscut angle. In-depth
characterizations and theoretical calculations reveal that the introduction of
Fe significantly decreases the formation energy of parallel steps on sapphire
surfaces and contributes to the edge-nucleation of unidirectional TMDCs domains
(>99%). The ultrahigh electron mobility (~86 cm2 V -1 s-1) and remarkable
on/off current ratio (~108) are discovered on 4-inch single-crystal Fe-MoS2
monolayers due to the ultralow contact resistance and perfect Ohmic contact
with metal electrodes. This work represents a substantial leap in terms of
bridging the synthesis and doping of wafer-scale single-crystal 2D
semiconductors without the need for substrate miscut, which should promote the
further device downscaling and extension of Moore's law.Comment: 17 pages, 5 figure
High density lipoprotein downregulates angiotensin II type 1 receptor and inhibits angiotensin II-induced cardiac hypertrophy
Angiotensin II (AngII) and its type receptor (AT1-R) play important roles in the development of cardiac hypertrophy. Low level of high density lipoprotein (HDL) is also an independent risk factor for cardiac hypertrophy. We therefore investigated in the present study whether HDL inhibits cardiac hypertrophy relatively to inhibition of AngII and AT1-R in both in vitro and in vivo experiments. Stimulation of cultured cardiomyocytes of neonatal rats with AngII for 24 h and infusion of AngII in mice for 2 weeks resulted in marked cardiac hypertrophic responses including increased protein synthesis, enlarged sizes of cardiomyocytes and hearts, upregulated phosphorylation levels of protein kinases and reprogrammed expression of specific genes, all of which were significantly attenuated by the treatment with HDL. Furthermore, AngII-treatment induced upregulation of AT-R expression either in cultured cardiomyocytes or in hearts of mice and HDL significantly suppressed the upregulation of AT1-R. Our results suggest that HDL may abrogate AngII-induced cardiac hypertrophy through downregulation of AT1-R expression. (C) 2010 Elsevier Inc. All rights reserved
Recommended from our members
Aggravated myocardial infarction-induced cardiac remodeling and heart failure in histamine-deficient mice
Histamine has pleiotropic pathophysiological effects, but its role in myocardial infarction (MI)-induced cardiac remodeling remains unclear. Histidine decarboxylase (HDC) is the main enzyme involved in histamine production. Here, we clarified the roles of HDC-expressing cells and histamine in heart failure post-MI using HDC-EGFP transgenic mice and HDC-knockout (HDC−/−) mice. HDC+CD11b+ myeloid cell numbers markedly increased in the injured hearts, and histamine levels were up-regulated in the circulation post-MI. HDC−/− mice exhibited more adverse cardiac remodeling, poorer left ventricular function and higher mortality by increasing cardiac fibrogenesis post-MI. In vitro assays further confirmed that histamine inhibited heart fibroblast proliferation. Furthermore, histamine enhanced the signal transducer and activator of transcription (STAT)-6 phosphorylation level in murine heart fibroblasts, and the inhibitive effects of histamine on fibroblast proliferation could be blocked by JAK3/STAT6 signaling selective antagonist. STAT6-knockout (STAT6−/−) mice had a phenotype similar to that of HDC−/− mice post-MI; however, in contrast to HDC−/− mice, the beneficial effects of exogenous histamine injections were abrogated in STAT6−/− mice. These data suggest that histamine exerts protective effects by modulating cardiac fibrosis and remodeling post-MI, in part through the STAT6-dependent signaling pathway
Energy balancing routing method for coal mine wireless multimedia sensor network
According to multimedia information collection requirements and characteristics of confined band space in coal mine tunnel and limited energy of sensor nodes, a wireless multimedia sensor network (WMSN) system model of coal mine was built, and an energy balancing routing method for coal mine WMSN was proposed, which included a position and residual energy based hierarchy clustering in virtual grids (PREHCVG) algorithm and an energy and distance based ant colony routing (EDACR) algorithm. In the method, PREHCVG algorithm divides nodes into different virtual grid for cluster management based on communication radius of the nodes in the network, and selects cluster head nodes according to residual energy and location information of the nodes. EDACR algorithm selects routing nodes from cluster head nodes and alternative cluster head nodes according to residual energy and distance information of the nodes. The simulation results show that the energy balancing routing method for coal mine WMSN can effectively balance energy consumption of WMSN nodes, reduce the number of energy-exhausted nodes and prolong life cycle of WMSN compared to traditional LEACH algorithm
- …