57 research outputs found

    Treat Your Bug Right

    Get PDF

    Hypoglycemic herbs and their action mechanisms

    Get PDF
    Conventional drugs treat diabetes by improving insulin sensitivity, increasing insulin production and/or decreasing the amount of glucose in blood. Several herbal preparations are used to treat diabetes, but their reported hypoglycemic effects are complex or even paradoxical in some cases. This article reviews recent findings about some of the most popular hypoglycemic herbs, such as ginseng, bitter melon and Coptis chinensis. Several popular commercially available herbal preparations are also discussed, including ADHF (anti-diabetes herbal formulation), Jiangtangkeli, YGD (Yerbe Mate-Guarana-Damiana) and BN (Byakko-ka-ninjin-to). The efficacy of hypoglycemic herbs is achieved by increasing insulin secretion, enhancing glucose uptake by adipose and muscle tissues, inhibiting glucose absorption from intestine and inhibiting glucose production from heptocytes

    Establishment of high effective regeneration and propagation system for ornamental crabapple (Malus spp.)

    Get PDF
    In order to establish efficient regeneration system for ornamental tissue culture, we used Malus spp. ‘Indian Magic as the experimental materials and investigated the effects of disinfection and antibrowning agents, culture mediums and hormones proportion on differentiation, multiplication, callus induction and rooting, and also the effects of culture substrates on growth of transplants in greenhouse. The results showed that, the selection of stem tips without scale as the tissue culture material and the employment of HgCl2 5+3 min two-step method for stem tip disinfection could reduce contamination rate and the addition of 2.0 g/l PVP (polyvinylpyrrolidone) could effectively prevent the browning of culture medium and explants. When the three kinds of culture medium were fixed [Murshige and Skoog (MS) containing 1.0 mg/l 6-BA (6-benzyladenine) plus 0.01 mg/l NAA (anaphthaleneacetic acid), MS containing mg/l 6-BA plus 0.2 mg/l NAA and 1/2 MS containing 0.2 mg/l NAA] on inducing differentiation, multiplication and rooting, the differentiation rate, multiplication coefficient and rooting rate increased to 81.2, 6.13 and 100%, respectively. At the same time, leaves callus induction rate reached 100% on the medium of MS containing 1.5 mg/l 6-BA plus 1.0 mg/l 2,4- D(2,4-dichlorophexoxyace-tic acid) and adventitious shoots were directly regenerated from leaves on MS containing 1 mg/l 6-BA plus 0.1 mg/l NAA. The survival rate of the transplants was up to 95% and seedlings grew well after the transplant to the substrates containing vermiculite and perlite (1:1) in the greenhouse under relative humidity of 80 to 85%, temperature of 25 ± 2°C, light intensity of 1500 to 2000Lx and mist spraying condition. Based on the stated, we determined a technical framework of the leaves callus induction and regeneration for crabapple tissue culture, in which both the types and concentrations of hormones added in the medium played most important roles.Key words: Malus spp., regeneration, callus induction, propagation, hormones

    A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells

    Get PDF
    The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor’s potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ∼2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release

    A bitter pill for type 2 diabetes? The activation of bitter taste receptor TAS2R38 can stimulate GLP-1 release from enteroendocrine L-cells

    Get PDF
    The bitter taste receptor TAS2R38 is a G protein coupled receptor (GPCR) that has been found in many extra-oral locations like the gastrointestinal (GI) system, respiratory system, and brain, though its function at these locations is only beginning to be understood. To probe the receptor’s potential metabolic role, immunohistochemistry of human ileum tissues was performed, which showed that the receptor was co-localized with glucagon-like peptide 1 (GLP-1) in L-cells. In a previous study, we had modeled the structure of this receptor for its many taste-variant haplotypes (Tan et al. 2011), including the taster haplotype PAV. The structure of this haplotype was then used in a virtual ligand screening pipeline using a collection of ∼2.5 million purchasable molecules from the ZINC database. Three compounds (Z7, Z3, Z1) were purchased from the top hits and tested along with PTU (known TAS2R38 agonist) in in vitro and in vivo assays. The dose-response study of the effect of PTU and Z7 on GLP-1 release using wild-type and TAS2R38 knockout HuTu-80 cells showed that the receptor TAS2R38 plays a major role in GLP-1 release due to these molecules. In vivo studies of PTU and the three compounds showed that they each increase GLP-1 release. PTU was also chemical linked to cellulose to slow its absorption and when tested in vivo, it showed an enhanced and prolonged GLP-1 release. These results suggest that the GI lumen location of TAS2R38 on the L-cell makes it a relatively safe drug target as systemic absorption is not needed for a TAS2R38 agonist drug to effect GLP-1 release

    PgtE Enzyme of Salmonella enterica Shares the Similar Biological Roles to Plasminogen Activator (Pla) in Interacting With DEC-205 (CD205), and Enhancing Host Dissemination and Infectivity by Yersinia pestis

    Get PDF
    Yersinia pestis, the cause of plague, is a newly evolved Gram-negative bacterium. Through the acquisition of the plasminogen activator (Pla), Y. pestis gained the means to rapidly disseminate throughout its mammalian hosts. It was suggested that Y. pestis utilizes Pla to interact with the DEC-205 (CD205) receptor on antigen-presenting cells (APCs) to initiate host dissemination and infection. However, the evolutionary origin of Pla has not been fully elucidated. The PgtE enzyme of Salmonella enterica, involved in host dissemination, shows sequence similarity with the Y. pestis Pla. In this study, we demonstrated that both Escherichia coli K-12 and Y. pestis bacteria expressing the PgtE-protein were able to interact with primary alveolar macrophages and DEC-205-transfected CHO cells. The interaction between PgtE-expressing bacteria and DEC-205-expressing transfectants could be inhibited by the application of an anti-DEC-205 antibody. Moreover, PgtE-expressing Y. pestis partially re-gained the ability to promote host dissemination and infection. In conclusion, the DEC-205-PgtE interaction plays a role in promoting the dissemination and infection of Y. pestis, suggesting that Pla and the PgtE of S. enterica might share a common evolutionary origin.Peer reviewe

    Broadcast Network Coverage with Multicell Cooperation

    No full text
    Multicell cooperation has been identified as one of the underlying principles for future wireless communication systems. This paper studies the benefits of multicell cooperation in broadcast TV network from an information theoretical perspective. We define outage capacity as the figure of merit and derive the broadcast coverage area to evaluate such system. Specifically, we calculate the broadcast coverage area with given common information rate and outage probabilities when multiple base stations collaboratively transmit the broadcast signals. For the general MIMO case where receivers have multiple antennas, we provide simulation results to illustrate the expanded coverage area. In all cases, our results show that the coverage of a TV broadcast network can be significantly improved by multicell cooperation
    • …
    corecore