5 research outputs found

    Multilayering BZO nanocolumns with different defect densities for YBCO high field applications

    Get PDF
    The multilayer structures of alternating superconducting YBCO films doped with different BZO nanocolumn densities were utilized. We show that using 50 nm thick layers increases J (c) in the whole angular range by maximum 40% as compared with 200 nm single layer BZO-doped or multilayers with smaller thickness. Multilayering is found to be most effective at high magnetic fields and temperatures. These results indicate that demonstrated multilayer structures are extremely attractive for various electrical power applications in the foreseeable future. The experimental outcomes are thoroughly discussed with the mechanisms of crystalline quality and flux pinning in YBCO with different BZO nanorod densities multilayers of varying thicknesses

    Hydrothermal synthesis of Ni₃TeO₆ and Cu₃TeO₆ nanostructures for magnetic and photoconductivity applications

    No full text
    Abstract Despite great attention toward transition metal tellurates especially M₃TeO₆ (M = transition metal) in magnetoelectric applications, control on single phasic morphology-oriented growth of these tellurates at the nanoscale is still missing. Herein, a hydrothermal synthesis is performed to synthesize single-phased nanocrystals of two metal tellurates, i.e., Ni₃TeO₆ (NTO with average particle size ∼37 nm) and Cu₃TeO₆ (CTO ∼ 140 nm), using NaOH as an additive. This method favors the synthesis of pure NTO and CTO nanoparticles without the incorporation of Na at pH = 7 in MTO crystal structures such as Na₂M₂TeO₆, as it happens in conventional synthesis approaches such as solid-state reaction and/or coprecipitation. Systematic characterization techniques utilizing in-house and synchrotron-based characterization methods for the morphological, structural, electronic, magnetic, and photoconductivity properties of nanomaterials showed the absence of Na in individual particulate single-phase MTO nanocrystals. Prepared MTO nanocrystals also exhibit slightly higher antiferromagnetic interactions (e.g., TN-NTO = 57 K and TN-CTO = 68 K) compared to previously reported MTO single crystals. Interestingly, NTO and CTO show not only a semiconducting nature but also photoconductivity. The proposed design scheme opens the door to any metal tellurates for controllable synthesis toward different applications. Moreover, the photoconductivity results of MTO nanomaterials prepared serve as a preliminary proof of concept for potential application as photodetectors

    A diamagnetic iron complex and its twisted sister:structural evidence on partial spin state change in a crystalline iron complex

    No full text
    Abstract We report here the syntheses of a diamagnetic Fe complex [Fe(HL)₂] (1), prepared by reacting a redox non-innocent ligand precursor N,N′-bis(3,5-di-tert-butyl-2-hydroxy-phenyl)-1,2-phenylenediamine (H₄L) with FeCl₃, and its phenoxazine derivative [Fe(L′)₂] (2), which was obtained via intra-ligand cyclisation of the parent complex. Magnetic measurements, accompanied by spectroscopic, structural and computational analyses show that 1 can be viewed as a rather unusual Fe(III) complex with a diamagnetic ground state in the studied temperature range due to a strong antiferromagnetic coupling between the low-spin Fe(III) ion and a radical ligand. For a paramagnetic high-spin Fe(II) complex 2 it was found that, when crystalline, it undergoes a thermally induced process where 25% of the molecules in the material change to a diamagnetic low-spin ground state below 100 K. Single crystal X-ray studies conducted at 95 K afforded detailed structural evidence for this partial change of spin state of 2 showing the existence of crystallographically distinct molecules in a 3 : 1 ratio which exist in high- and low-spin states, respectively. Also, the magnetic behaviour of 2 was found to be related with the crystallinity of the material as demonstrated by near-IR radiation to unpaired electrons conversion ability of amorphous sample of 2

    Effect of strain and grain boundaries on dielectric properties in La0.7Sr0.3MnO3 thin films

    No full text
    High dielectric constant and its dependence on structural strain and grain boundaries (GB) in La0.7Sr0.3MnO3 (LSMO) thin films are reported. X-ray diffraction, magnetization, and magneto-transport measurements of the LSMO films, made by pulsed laser deposition on two different substrates—MgO and SrTiO3 (STO), were compared to co-relate magnetic properties with dielectric properties. At room temperature, in the ferromagnetic phase of LSMO, a high dielectric constant (6 × 104) was observed up to 100 kHz frequency for the films on MgO, with polycrystalline properties and more high-angle GB related defects, while for the films on STO, with single-crystalline properties but strained unit cells, high dielectric constant (≈104) was observed until 1 MHz frequency. Also, a large dielectric relaxation time with significant broadening from the Debye single-dielectric relaxation model has been observed in samples with higher GB defects. Impedance spectroscopy further shows that large dielectric constant of the single-crystalline, strained LSMO film is intrinsic in nature while that in the polycrystalline films are mainly extrinsic due to higher amount of GBs. The presence of high dielectric constant value until high frequency range rules out the possibility of “apparent giant dielectric constant” arising from the sample-electrode interface. Coexistence of ferromagnetism and high dielectric constant can be very useful for different microelectronic applications
    corecore