3 research outputs found

    Artemisinin-based combination therapy does not measurably reduce human infectiousness to vectors in a setting of intense malaria transmission

    Get PDF
    <p>Background: Artemisinin-based combination therapy (ACT) for treating malaria has activity against immature gametocytes. In theory, this property may complement the effect of terminating otherwise lengthy malaria infections and reducing the parasite reservoir in the human population that can infect vector mosquitoes. However, this has never been verified at a population level in a setting with intense transmission, where chronically infectious asymptomatic carriers are common and cured patients are rapidly and repeatedly re-infected.</p> <p>Methods: From 2001 to 2004, malaria vector densities were monitored using light traps in three Tanzanian districts. Mosquitoes were dissected to determine parous and oocyst rates. Plasmodium falciparum sporozoite rates were determined by ELISA. Sulphadoxinepyrimethamine(SP) monotherapy was used for treatment of uncomplicated malaria in the contiguous districts of Kilombero and Ulanga throughout this period. In Rufiji district, the standard drug was changed to artesunate co-administered with SP (AS + SP) in March 2003. The effects of this change in case management on malaria parasite infection in the vectors were analysed.</p> <p>Results: Plasmodium falciparum entomological inoculation rates exceeded 300 infective bites per person per year at both sites over the whole period. The introduction of AS + SP in Rufiji was associated with increased oocyst prevalence (OR [95%CI] = 3.9 [2.9-5.3], p < 0.001), but had no consistent effect on sporozoite prevalence (OR [95%CI] = 0.9 [0.7-1.2], p = 0.5). The estimated infectiousness of the human population in Rufiji was very low prior to the change in drug policy. Emergence rates and parous rates of the vectors varied substantially throughout the study period, which affected estimates of infectiousness. The latter consequently cannot be explained by the change in drug policy.</p> <p>Conclusions: In high perennial transmission settings, only a small proportion of infections in humans are symptomatic or treated, so case management with ACT may have little impact on overall infectiousness of the human population. Variations in infection levels in vectors largely depend on the age distribution of the mosquito population. Benefits of ACT in suppressingtransmission are more likely to be evident where transmission is already low or effective vector control is widely implemented.</p&gt

    A reliable morphological method to assess the age of male Anopheles gambiae

    Get PDF
    Background Release of genetically-modified (GM) or sterile male mosquitoes for malaria control is hampered by inability to assess the age and mating history of free-living male Anopheles. Methods Age and mating-related changes in the reproductive system of male Anopheles gambiae were quantified and used to fit predictive statistical models. These models, based on numbers of spermatocysts, relative size of sperm reservoir and presence/absence of a clear area around the accessory gland, were evaluated using an independent sample of mosquitoes whose status was blinded during the experiment. Results The number of spermatocysts in male testes decreased with age, and the relative size of their sperm reservoir increased. The presence of a clear area around accessory glands was also linked to age and mating status. A quantitative model was able to categorize males from the blind trial into age groups of young (≤ 4 days) and old (> 4 days) with an overall efficiency of 89%. Using the parameters of this model, a simple table was compiled that can be used to predict male age. In contrast, mating history could not be reliably assessed as virgins could not be distinguished from mated males. Conclusion Simple assessment of a few morphological traits which are easily collected in the field allows accurate age-grading of male An. gambiae. This simple, yet robust, model enables evaluation of demographic patterns and mortality in wild and released males in populations targeted by GM or sterile male-based control programmes

    Nature beats nurture: a case study of the physiological fitness of free-living and laboratory-reared male Anopheles gambiae s.l

    Get PDF
    Laboratory experimentation forms the basis for most of our knowledge of the biology of many organisms, in particular insects. However, the accuracy with which laboratory-derived estimates of insect life history and behaviour can predict their fitness and population dynamics in the wild is rarely validated. Such comparison is especially important in cases where laboratory-derived information is used to formulate and implement strategies for the genetic control of insects in nature. We have conducted a comparative study of the reproductive potential and life history of male Anopheles gambiae Gilies sensu lato mosquitoes from both standardized laboratory conditions and from natural field settings. We measured three indirect indicators of male mosquito fitness: energetic reserves, body size and survival, in a bid to determine whether the demographics and energetic limitations of wild males can be correctly predicted from their laboratory counterparts. Crucially, the body size and lipid reserves of wild males were substantially greater than those reared under standard laboratory conditions. We caution that the energetic limitations of insects as identified in the laboratory may underestimate their resilience in the wild, and discuss the implications of this phenomenon with respect to vector-borne disease control programmes based on genetic control of mosquitoes
    corecore