63 research outputs found

    Slightly Non-Minimal Dark Matter in PAMELA and ATIC

    Full text link
    We present a simple model in which dark matter couples to the standard model through a light scalar intermediary that is itself unstable. We find this model has several notable features, and allows a natural explanation for a surplus of positrons, but no surplus of anti-protons, as has been suggested by early data from PAMELA and ATIC. Moreover, this model yields a very small nucleon coupling, well below the direct detection limits. In this paper we explore the effect of this model in both the early universe and in the galaxy.Comment: 7 pages, 6 figures, v3: updated for new data, added discussion of Ferm

    Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition

    Get PDF
    Polycomb repressive complex 2 (PRC2) is a key regulator of epigenetic states catalyzing histone H3 lysine 27 trimethylation (H3K27me3), a repressive chromatin mark. PRC2 composition is conserved from humans to plants, but the function of PRC2 during the early stage of plant life is unclear beyond the fact that it is required for the development of endosperm, a nutritive tissue that supports embryo growth. Circumventing the requirement of PRC2 in endosperm allowed us to generate viable homozygous null mutants for FERTILIZATION INDEPENDENT ENDOSPERM (FIE), which is the single Arabidopsis homolog of Extra Sex Combs, an indispensable component of Drosophila and mammalian PRC2. Here we show that H3K27me3 deposition is abolished genome-wide in fie mutants demonstrating the essential function of PRC2 in placing this mark in plants as in animals. In contrast to animals, we find that PRC2 function is not required for initial body plan formation in Arabidopsis. Rather, our results show that fie mutant seeds exhibit enhanced dormancy and germination defects, indicating a deficiency in terminating the embryonic phase. After germination, fie mutant seedlings switch to generative development that is not sustained, giving rise to neoplastic, callus-like structures. Further genome-wide studies showed that only a fraction of PRC2 targets are transcriptionally activated in fie seedlings and that this activation is accompanied in only a few cases with deposition of H3K4me3, a mark associated with gene activity and considered to act antagonistically to H3K27me3. Up-regulated PRC2 target genes were found to act at different hierarchical levels from transcriptional master regulators to a wide range of downstream targets. Collectively, our findings demonstrate that PRC2-mediated regulation represents a robust system controlling developmental phase transitions, not only from vegetative phase to flowering but also especially from embryonic phase to the seedling stage

    Neuronal interactions are higher in the cortex than thalamus in the somatosensory pathway

    No full text
    Previous studies have shown significant correlated discharges (noise correlation) and synergistic information coding among adjacent cortical neurons. In order to investigate whether such interactions are present at an earlier stage of sensory processing, we compared noise correlation and synergistic information transmission in the ventral posterolateral nucleus (VPLn) of thalamus and primary somatosensory cortex (SI) of anesthetized rats. A hind paw was stimulated electrically and responses of several neighboring neurons were recorded simultaneously with a tetrode. Analyses indicated that noise correlation in the SI was about four times higher than in the VPLn, and, interestingly, it was significantly reduced following sensory stimulation in both regions. Spike count distributions of individual VPLn units contained higher amounts of information about the delivery of external stimulation compared with those of SI units. When simultaneously recorded units were considered together, transmission of information was more interactive (synergistic or redundant) among SI than VPLn units. On average, information transmission was independent in the VPLn, but synergistic in the SI. The difference in synergistic information coding was largely attributable to different levels of noise correlation and their modulation by external sensory stimulation. These results indicate that neuronal interactions are relatively low at the thalamic level, but much enhanced at the cortical level along the somatosensory pathway. The enhanced neuronal interactions in the cortex may reflect the role of cortex in extracting higher features of sensory stimuli. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved.X115sciescopu

    Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.

    No full text
    We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems
    corecore