565 research outputs found

    Inverse design of cooperative electromagnetic interactions

    Full text link
    The cooperative electromagnetic interactions between discrete resonators have been widely used to modify the optical properties of metamaterials. Here we propose a general evolutionary approach for engineering these interactions in arbitrary networks of resonators. To illustrate the performances of this approach, we designed by genetic algorithm, an almost perfect broadband absorber in the visible range made with a simple binary array of metallic nanoparticles

    Proposal for compact solid-state III-V single-plasmon sources

    Full text link
    We propose a compact single-plasmon source operating at near-infrared wavelengths on an integrated III-V semiconductor platform, with a thin ridge waveguide serving as the plasmon channel. By attaching an ultra-small cavity to the channel, it is shown that both the plasmon generation efficiency ({\beta}) and the spontaneous-decay rate into the channel can be significantly enhanced. An analytical model derived with the Lorentz reciprocity theorem captures the main physics involved in the design of the source and yields results in good agreement with fully-vectorial simulations of the device. At resonance, it is predicted that the ultra-small cavity increases the {\beta}-factor by 70% and boosts the spontaneous decay rate by a factor 20. The proposed design could pave the way towards integrated and scalable plasmonic quantum networks. Comparison of the present design with other fully-dielectric competing approaches is addressed.Comment: 8 pages, 4 figure

    Polaritonic modes in a dense cloud of atoms

    Full text link
    We analyze resonant light scattering by an atomic cloud in a regime where near-field interactions between scatterers cannot be neglected. We first use a microscopic approach and calculate numerically the eigenmodes of the cloud for many different realizations. It is found that there always exists a small number of polaritonic modes that are spatially coherent and superradiant. We show that scattering is always dominated by these modes. We then use a macroscopic approach by introducing an effective permittivity so that the atomic cloud is equivalent to a dielectric particle. We show that there is a one-to-one correspondence between the microscopic polaritonic modes and the modes of a homogeneous particle with an effective permittivity

    Solid-state single photon sources: the nanowire antenna

    Get PDF
    International audienceWe design several single-photon-sources based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. Through various taper designs, we engineer the nanowire ends to realize efficient metallic-dielectric mirrors and to reduce the divergence of the far-field radiation diagram. Using fully-vectorial calculations and a comprehensive Fabry-Perot model, we show that various realistic nanowire geometries may act as nanoantennas (volume of ≈0.05 λ3) that assist funnelling the emitted photons into a single monomode channel. Typically, very high extraction efficiencies above 90% are predicted for a collection optics with a numerical aperture NA=0.85. In addition, since no frequency-selective effect is used in our design, this large efficiency is achieved over a remarkably broad spectral range, 70 nm at λ=950 nm

    Non-Local Control of Single Surface Plasmon

    Full text link
    Quantum entanglement is a stunning consequence of the superposition principle. This universal property of quantum systems has been intensively explored with photons, atoms, ions and electrons. Collective excitations such as surface plasmons exhibit quantum behaviors. For the first time, we report an experimental evidence of non-local control of single plasmon interferences through entanglement of a single plasmon with a single photon. We achieved photon-plasmon entanglement by converting one photon of an entangled photon pair into a surface plasmon. The plasmon is tested onto a plasmonic platform in a Mach-Zehnder interferometer. A projective measurement on the polarization of the photon allows the non-local control of the interference state of the plasmon. Entanglement between particles of various natures paves the way to the design of hybrid systems in quantum information networks.Comment: 6 pages, 3 figure

    Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons

    Get PDF
    It is known that the near-field spectrum of the local density of states of the electromagnetic field above a SiC/air interface displays an intense narrow peak due to the presence of a surface polariton. It has been recently shown that this surface wave can be strongly coupled with the sheet plasmon of graphene in graphene-SiC heterosystems. Here, we explore the interplay between these two phenomena and demonstrate that the spectrum of the electromagnetic local density of states in these systems presents two peaks whose position depends dramatically both on the distance to the interface and on the chemical potential of graphene. This paves the way towards the active control of the local density of states.Comment: 6 pages, 4 figure
    corecore