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It is known that the near-field spectrum of the local density of states of the electromagnetic
field above a SiC/air interface displays an intense narrow peak due to the presence of a surface
polariton. It has been recently shown that this surface wave can be strongly coupled with the sheet
plasmon of graphene in graphene-SiC heterosystems. Here, we explore the interplay between these
two phenomena and demonstrate that the spectrum of the electromagnetic local density of states in
these systems presents two peaks whose position depends dramatically both on the distance to the
interface and on the chemical potential of graphene. This paves the way towards the active control
of the local density of states.

PACS numbers: 73.20.Mf, 07.79.Fc, 44.40.+a, 78.20.-e

I. INTRODUCTION

Graphene has attracted during the last years a strong
interest because of its unique electronic1–5 and optical
properties6 that could lead to breakthrough technologies
in the domains of nanoelectronics and nano-optics. One
of the main features is the linear form of graphene elec-
tronic dispersion curves near the edges of the Brillouin
zone, which is the signature of charge carriers of zero ef-
fective mass. More recently, the study of graphene optical
properties has provoked a very particular attention7–11.
An important property of monolayer graphene is the
presence of strongly confined sheet plasmons12,13 which
can be easily tuned by modifying the charge density
within the lattice of carbon atoms14–18. It has been sug-
gested that these tunable surface modes could be used to
manage near-field radiative heat transfer19,20 or to con-
vert near-field energy with graphene-based thermopho-
tovoltaic devices21,22. When studying these surface ex-
citations, the intrinsic quantity containing all the rele-
vant information is the electromagnetic local density of
states (EM-LDOS)23. Let us remind the meaning of the
electromagnetic density of states in vacuum: it is used
to describe the spontaneous emission rate as well as the
blackbody energy density. In the presence of interfaces
both quantities are modified. This is due to both the
presence of surface modes and to interferences between
incident and reflected waves. These processes result in a
space-dependent density of states. This is conveniently
described by means of the EM-LDOS. Surface modes
have been recently shown to affect significantly the local
equilibrium energy density24–26 and also to modify spon-
taneous emission rate27–29. The EM-LDOS also plays a
key role in the study of radiative cooling of a nanoparti-

cle in proximity of a surface30, losses in atomic traps31,32,
as well as to derive the Casimir force33. Tuning the EM-
LDOS at the surface of nanostructured materials is also
a challenging problem34. Here we focus on the particular
configuration of a multilayered planar structure. In this
case, the EM-LDOS can be decomposed in an electric
and a magnetic contribution as ρ = ρE + ρM, where23

ρE(d, ω) =
ρv(ω)
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and ρM is obtained from ρE by exchanging the polariza-
tions TE and TM. In this expression d is the distance
from the surface along the z axis (the surface coincides
with the xy plane, see Fig. 1), κ = ck/ω, k being
the component of the wavevector parallel to the surface,
p =

√
1− κ2 and ρv(ω) = ω2/π2c3 is the EM-LDOS in

vacuum. The material properties of the surface are taken
into account in the EM-LDOS (1) through the Fresnel
reflection coefficients rTE and rTM for the two polariza-
tions.

Several experimental techniques can be used to probe
the near-field properties of a surface. The dispersion re-
lation of sheet plasmons can be studied using electron
energy loss spectroscopy (EELS)35–38. This technique,
used in conjunction with a scanning tunneling electron
microscope (STEM), has recently allowed a measurement
of the EM-LDOS39. As analyzed in ref.40, STEM-EELS
yields a signal related to the integral of the EM-LDOS
along the trajectory of the electrons. As a consequence,
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FIG. 1: Scheme of the system. A dielectric (SiC) substrate is
covered with a monolayer graphene sheet coinciding with the
plane z = 0.

the z dependence of the EM-LDOS cannot be observed
using STEM-EELS. Direct observation of sheet plasmons
on graphene has also been reported recently41–43 using
a scanning near-field optical microscope (SNOM). This
kind of technique (the analogue of scanning tunneling
microscope for electronic LDOS) consists in approaching
an AFM tip to the surface, which scatters the evanes-
cent field in proximity of the surface into a propagative
contribution, observed by a far-field detector. This con-
version is usually theoretically described by representing
the tip as a point dipole23. By allowing the control of the
distance between the tip and the surface, this technique
allows the study of the z dependence of the EM-LDOS.
The connection between the observed signal and the EM-
LDOS depends indeed on the details of the experimental
techniques, as discussed in23–25,40–42.

In this paper, our attention is focused on the distance
dependence of the EM-LDOS. It has been shown26 that
the EM-LDOS has dramatic spectral changes in the near
field due to to the resonant contribution of the surface
waves at the frequencies where ε(ω) + 1 = 0. These large
spectral changes with distance in vacuum are a spectac-
ular example of the non-invariance of spectra upon prop-
agation in vacuum first discussed in ref.45. We consider
here a graphene sheet deposited on silicon carbide (SiC)
(see Fig. 1) and show that the EM-LDOS peak positions
strongly depend on distance. In addition, they also de-
pend on chemical potential, paving the way to an active
control of the EM-LDOS. In particular we pay a specific
attention to the description of the coupling mechanism
between the graphene plasmon and the surface phonon-
polariton supported by the SiC and highlight the finger-
print of this coupling on the EM-LDOS spectrum. This
paper is organized as follows. In Section II we discuss the
behavior of the electromagnetic local density of states
for SiC alone, for a suspended graphene sheet, and for
the coupled system SiC-graphene. Then, in Section III
these results are interpreted in terms of the dispersion
relations for the surface modes in the three different con-
figurations. Finally, Section IV contains some conclusive
remarks.

II. ELECTROMAGNETIC LOCAL DENSITY
OF STATES

In the general configuration of a substrate having a
frequency-dependent dielectric permittivity ε(ω) covered
with graphene (having 2D surface conductivity σ(ω))
the reflection coefficients appearing in eq. (1) take the
form6,14

rTE =
p− pm − µ0c σ(ω)

p+ pm + µ0c σ(ω)
,

rTM =
ε(ω)p− pm + µ0c σ(ω)p pm
ε(ω)p+ pm + µ0c σ(ω)p pm

,

(2)

where pm =
√
ε(ω)− κ2 equals c/ω times the z com-

ponent of the wavevector inside the medium. The ordi-
nary case of a dielectric substrate is recovered by taking
σ(ω) = 0, whereas ε(ω) = 1 gives back the reflection
coefficients of a suspended graphene sheet.

Before calculating the EM-LDOS, we need a model
for the permittivity ε(ω) of SiC and for the conductivity
σ(ω) of graphene. For the permittivity we use a Lorentz
model46 ε(ω) = ε∞(ω2 − ω2

L + iΓω)/(ω2 − ω2
T + iΓω)

with ε∞ = 6.7, ωL = 1.827× 1014 rad s−1, ωT = 1.495×
1014 rad s−1 and Γ = 0.9× 1012 rad s−1. This model pre-
dicts the existence of a surface phonon-polariton reso-
nance at frequency ωspp ' 1.787 × 1014 rad s−1. As for
the conductivity σ(ω), it can be written as a sum of an in-
traband (Drude) and an interband contribution, respec-
tively given by14
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i
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where G(x) = sinh(x/kBT )/[cosh(µ/kBT ) +
cosh(x/kBT )]. The conductivity depends explicitly
on the temperature T of the graphene sheet, for which
we have chosen T = 300K in our calculations. Moreover,
it contains the chemical potential µ, which represents a
varying parameter in our discussion, and the relaxation
time τ , for which we have used the value15 τ = 10−13 s.

We now turn to the analysis of the EM-LDOS spectra.
In Fig. 2 we show the electric, magnetic and total EM-
LDOS for a semi-infinite SiC surface (Fig. 2(a)), for one
layer of suspended graphene (Fig. 2(b)) and for graphene
on SiC (Fig. 2(c)). All the EM-LDOS shown in Fig. 2 are
calculated at a distance of d = 50nm from the surface,
chosen to be smaller than the decay distance in air of
SiC surface polaritons. The curves in Fig. 2(a) show the
well-known peak26 at ω = ωspp due to the surface phonon
polariton contribution, almost entirely associated to the
electric contribution. The magnetic contribution, on the
contrary, is at the origin of a secondary peak at ω = ωT ,
approximately two orders of magnitude weaker, associ-
ated to the resonance of the dielectric constant of SiC47.
We now focus on a suspended sheet of graphene (Fig.
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FIG. 2: EM-LDOS at a distance of d = 50nm from a SiC
substrate (a), a suspended graphene sheet (b) and a graphene-
covered SiC substrate (c). In panel (a) the total EM-LDOS
(solid line) is decomposed in its electric (dot-dashed line) and
magnetic contribution (dotted line). In panels (b) and (c),
corresponding to suspended graphene and graphene-covered
SiC respectively, only the total EM-LDOS is represented, for
three values of the graphene chemical potential: µ = 0 eV
(blue dot-dashed line), µ = 0.2 eV (red dashed line) and µ =
0.5 eV (black solid line).

2(b)). In this case, we have observed that the electric
part of the EM-LDOS is manifestly dominating for any
considered frequency: for this reason, we only represent
the total EM-LDOS both for suspended graphene and
graphene-covered SiC. Note that the density of states is
very broad as compared to the case of SiC and shows
only one maximum less pronounced than for SiC. A re-
markable property of graphene is the possibility of tun-
ing the peak frequency by tuning the chemical potential
µ. In particular, for the intermediate value µ = 0.2 eV,
the peak matches the phonon-polariton SiC resonance.
We are now interested in discussing what happens when
graphene is deposited on SiC (Fig. 2(c)). For all consid-
ered µ, we observe the appearance of three peaks in the
EM-LDOS. One of them appears at ω = ωT . Its height

and position do not depend on µ. This peak is due to s-
polarized magnetic fields so that it is not associated with
surface phonon polaritons and graphene plasmons. We
now focus on the two other peaks. One of them keeps
the memory of the SiC surface phonon-polariton reso-
nance but is shifted as µ increases and becomes broader.
The other peak also shifts toward higher frequencies as
µ increases.

III. DISPERSION RELATION OF SURFACE
MODES AND STRONG COUPLING

We now discuss how in each considered configuration
the EM-LDOS results from the surface modes interacting
within the graphene film. To this aim we study the poles
of the reflection coefficients (2), by focusing in particu-
lar on how the optical properties of graphene modify the
shape of the surface modes of SiC. This phenomenon will
be specifically discussed, as the EM-LDOS presented in
Fig. 2, as a function of µ. It is well known48 that the op-
tical description of a polar material by means of a Lorentz
model predicts the existence of surface modes only in TM
polarization. For this reason we will limit our analysis to
TM polarization also in the case of suspended graphene
and graphene on SiC. In order to derive the dispersion
relation of surface modes in the three cases, we study
the zeros of the denominator of rTM (see eq. (2)). It is
known that the dispersion relation depends on the choice
made when searching the poles. As discussed in ref.49,
when discussing EM-LDOS, we look for poles with real
wavevector k and complex frequency ω = ωr + iωi. In
this calculation scheme, ωr provides the energy of the
considered mode, while the inverse of ωi defines its life-
time. We have performed this calculation for the three
configurations in the same frequency region in which the
EM-LDOS has been discussed, and for k varying between
0 and 100µm−1. This choice is associated to the fact that
for a given distance d from the surface, the modes partic-
ipating to the density of states are smaller or of the order
of50 kc ' d−1, which for d = 50nm gives kc ' 20µm−1.

The results are shown in Fig. 3 for the three con-
figurations and the same three choices of µ used for
the EM-LDOS. The behavior of a Lorentz material in
terms of surface-mode dispersion relation is well-known:
it implies a branch following first (for small frequencies)
the light cone, then approaching a horizontal asymptote
at ω = ωspp

26. For SiC, this asymptote is reasonably
reached around k = 2µm−1. Thus, in the wavevector
scale of Fig. 3 the SiC curve reduces as a matter of fact
to a horizontal (dashed) line at ω = ωspp. This horizontal
asymptote is at the origin of the pronounced near-field
peak at ω = ωspp in the EM-LDOS associated to SiC
alone44.

Let us now focus on suspended graphene. In this case,
for any µ we observe the already known characteristic√
k-like dispersion relation14. Nevertheless, this analyti-

cal dependence of ω on k is deduced by performing several
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FIG. 3: Dispersion relations of surface modes for SiC (black
dashed line), suspended graphene (green dotted line) and
graphene-covered SiC (red solid line). The blue dot-dashed
line represents the light cone in vacuum. The comparison
is made for three different values of the graphene chemical
potential (µ = 0(a), 0.2(b), 0.5(c) eV).

approximations, and remarkably by taking into account
only the intraband contribution σD(ω) to the conductiv-
ity (see eq. (3)). This simplification starts failing when
reducing the value of µ and increasing the value of ω,
even in the domains we are considering in this work.
The result is a dispersion relation which has a similar
shape, but increases always more slowly than the curve
obtained for σ(ω) = σD(ω). By repeating our calculation
under this assumption and comparing the two results, we
have observed that their relative difference reaches val-
ues up to 115% for µ = 0 eV and k = 100µm−1 (being
instead 27% at k = 20µm−1), 7% for µ = 0.5 eV and
k = 100µm−1 (1% at k = 20µm−1). This shows that es-
pecially for low values of µ the role played by interband
transitions (described by σI(ω) in eq. (3)) is essential
for a precise quantitative calculation. Going back to the
analysis of graphene curves, we see that they allow to

readily explain the behavior of the EM-LDOS shown in
Fig. 2(b). First of all, the dispersion relation of plas-
mons on graphene does not have a horizontal asymptote
in the (ω, k) plane51 so that we do not expect a peak in
the EM-LDOS. Yet, the EM-LDOS displays broad peaks
which move when varying µ. To explain their origin, we
first observe that the integral describing the TM con-
tribution to the electric density of states (eq. (1)) is
dominated by a factor κ2 exp(−2κωz/c) for large κ as
p is equivalent to iκ. This clearly shows that there is
a distance-dependent cutoff wavevector kc = d−1 when
observing at distance d. It is seen that the density of
states has a peak value when κ2 exp(−2κωd/c) is maxi-
mum, i.e. for κω/c = 1/d. This near-field filtering yields
a d-dependent value of the most represented wavevec-
tor κ. We can associate a frequency ω to this peak κ
value using the dispersion relation. In summary, the fre-
quency peak in the EM-LDOS can be roughly estimated
as the frequency associated to the largest participating
wavevector, as confirmed by comparing Figs. 2 and 3.

We now finally discuss the case of graphene on SiC.
The analysis of Fig. 3 shows the appearance of an anti-
crossing, proving that we are in presence of a strong cou-
pling between SiC phonon-polariton and graphene plas-
mon as already shown16,36. The interplay between the
optical properties of the two materials gives rise to two
separate branches of dispersion relation, whose proper-
ties depend on the chemical potential. The most im-
portant effect due to the SiC-graphene coupling is the
disappearance of the horizontal asymptote at ω = ωspp.
More specifically, for larger values of µ the high-frequency
branch of the dispersion relation moves away from ω =
ωspp for large values of k and has no longer a flat asymp-
tote. Conversely, the lower branch increases and re-
mains bounded by a horizontal asymptote ω = ωT . For
µ = 0.2 eV and µ = 0.5 eV, the branch drifts toward
higher values of frequencies, explaining the shift of the
peak observed in Fig. 2. It is important to notice that
the intersection between k = d−1 = 20µm−1 and the
dispersion curve provides a rough estimate of the posi-
tion of the modified peaks. Once again, the position of
the EM-LDOS peak can be predicted from the disper-
sion relation, and the fact that this branch stays always
below the one of suspended graphene corresponds to the
fact that the peak in the EM-LDOS is always at lower
frequencies for graphene-covered SiC with respect to sus-
pended graphene.

We have highlighted that the position of the frequency
peaks in the EM-LDOS can be predicted by the behav-
ior of dispersion curves at the intersection points between
k = d−1 and the different branches of the coupled modes.
Hence, this analysis predicts d-dependent spectra of the
EM-LDOS. We display in Fig. 4 the EM-LDOS for a SiC-
graphene system with µ = 0.5 eV for several distances d
ranging from 1nm to 10µm. It is seen that the spectra
varies dramatically with distance. For SiC, the peak am-
plitude of the EM-LDOS varies but its position remains
fixed. Here, owing to strong coupling between surface
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FIG. 4: EM-LDOS for a SiC-graphene sample (µ = 0.5 eV)
for different values of the sample-tip distance d. The orange
dot-dashed vertical line corresponds to ω = ωT , whereas the
dashed black vertical line is ω = ωspp.

phonon polaritons and graphene plasmons, we observe
peaks at frequencies which depend on the distance to
the surface and on the chemical potential. This is a clear
consequence of the interplay between strong coupling and
near-field effects. To summarize, at a given distance d,
we expect a dominant contribution to the EM-LDOS of
the mode with k = d−1. To this value correspond two
frequency peaks given by Fig. 3. For instance, for the
smallest considered distance d = 1nm in Fig. 2, we have

a cutoff kc ' 1000µm−1, the quasi-horizontal shape of
the lower branch of coupled modes (see Fig. 3(c)), gives
rise to a pronounced peak in proximity of ω = ωT . In Fig.
4, we see that the EM-LDOS spectrum displays two peaks
due to strong coupling for d > 10 nm. On the contrary,
beyond 1µm the contribution of surface phonon polari-
tons and sheet plasmons to the EM-LDOS is reduced by
five orders of magnitude so that the spectral peaks dis-
appear. We conclude by emphasizing that the distance
dependence of the spectrum has to be accounted for when
designing experimental measurements of the EM-LDOS.

IV. CONCLUSIONS

We have calculated the electromagnetic local density
of states in proximity of a graphene-covered SiC surface,
and compared this result to the configurations of SiC and
suspended graphene. This comparison has proved the ap-
pearance of new resonances and a strong dependence of
the position of the new peaks both on the chemical po-
tential of graphene and on the distance from the surface.
We have also shown that the presence of the graphene
sheet significantly broadens the EM-LDOS spectrum of
the surface in the near field. All these features have
been explained in terms of dispersion relations of sur-
face modes, showing the occurrence of strong coupling
between surface phonon polaritons and sheet plasmons
of graphene. Hence, graphene can be used to tune the
near-field optical behavior of SiC. This property paves
the way to active control of the local density of states
with possible applications to controlling quantum emit-
ters lifetime or heat transfer at the nanoscale.
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