14 research outputs found

    Towards Complexity for Quantum Field Theory States

    Full text link
    We investigate notions of complexity of states in continuous quantum-many body systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of Multiscale Entanglement Renormalization Ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum preserving quadratic generators which form su(1,1)\mathfrak{su}(1,1) algebras. On the manifold of Gaussian states generated by these operations the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and holographic complexity proposals.Comment: 6+7 pages, 6 appendices, 2 figures; v2: references added; acknowledgments expanded; appendix F added, reviewing similarities and differences with hep-th/1707.08570; v3: version published in PR

    On the Time Dependence of Holographic Complexity

    Full text link
    We evaluate the full time dependence of holographic complexity in various eternal black hole backgrounds using both the complexity=action (CA) and the complexity=volume (CV) conjectures. We conclude using the CV conjecture that the rate of change of complexity is a monotonically increasing function of time, which saturates from below to a positive constant in the late time limit. Using the CA conjecture for uncharged black holes, the holographic complexity remains constant for an initial period, then briefly decreases but quickly begins to increase. As observed previously, at late times, the rate of growth of the complexity approaches a constant, which may be associated with Lloyd's bound on the rate of computation. However, we find that this late time limit is approached from above, thus violating the bound. Adding a charge to the eternal black holes washes out the early time behaviour, i.e., complexity immediately begins increasing with sufficient charge, but the late time behaviour is essentially the same as in the neutral case. We also evaluate the complexity of formation for charged black holes and find that it is divergent for extremal black holes, implying that the states at finite chemical potential and zero temperature are infinitely more complex than their finite temperature counterparts.Comment: 52+31 pages, 30 figure

    On the Time Dependence of Holographic Complexity

    Get PDF
    We evaluate the full time dependence of holographic complexity in various eternal black hole backgrounds using both the complexity=action (CA) and the complexity=volume (CV) conjectures. We conclude using the CV conjecture that the rate of change of complexity is a monotonically increasing function of time, which saturates from below to a positive constant in the late time limit. Using the CA conjecture for uncharged black holes, the holographic complexity remains constant for an initial period, then briefly decreases but quickly begins to increase. As observed previously, at late times, the rate of growth of the complexity approaches a constant, which may be associated with Lloyd's bound on the rate of computation. However, we find that this late time limit is approached from above, thus violating the bound. Adding a charge to the eternal black holes washes out the early time behaviour, i.e., complexity immediately begins increasing with sufficient charge, but the late time behaviour is essentially the same as in the neutral case. We also evaluate the complexity of formation for charged black holes and find that it is divergent for extremal black holes, implying that the states at finite chemical potential and zero temperature are infinitely more complex than their finite temperature counterparts.Comment: 52+31 pages, 30 figure

    Holographic Complexity in Vaidya Spacetimes II

    Full text link
    In this second part of the study initiated in arxiv:1804.07410, we investigate holographic complexity for eternal black hole backgrounds perturbed by shock waves, with both the complexity==action (CA) and complexity==volume (CV) proposals. In particular, we consider Vaidya geometries describing a thin shell of null fluid with arbitrary energy falling in from one of the boundaries of a two-sided AdS-Schwarzschild spacetime. We demonstrate how known properties of complexity, such as the switchback effect for light shocks, as well as analogous properties for heavy ones, are imprinted in the complexity of formation and in the full time evolution of complexity. Following our discussion in arxiv:1804.07410, we find that in order to obtain the expected properties of the complexity, the inclusion of a particular counterterm on the null boundaries of the Wheeler-DeWitt patch is required for the CA proposal.Comment: 83+38 pages, 34 figure

    Complexity Growth Rate in Lovelock Gravity

    No full text
    corecore