1,188 research outputs found

    K. Alex M\"uller and his important role in ferroelectricity

    Full text link
    In this review we concentrate on the work of K. Alex M\"uller in connection with his activities on oxide perovskites and ferroelectrics which were central to his research career long before he successfully discovered the first high temperature superconductor (HTSC) together with J. G. Bednorz in 1986. Not accidentally, but taking his long experience in perovskite ferroelectrics into account, the first HTSC was an oxide perovskite which had never been considered before to be superconducting.Comment: 8 pages, 4 figure

    Tuning the structural instability of SrTiO_3 by Eu doping: The phase diagram of Sr_1-xEu_xTiO_3

    Full text link
    The phase diagram of Sr_1-xEu_xTiO_3 is determined experimentally by electron paramagnetic resonance and resistivity measurements and analyzed theoretically within the self-consistent phonon approximation as a function of x ([0.03-1.0]). The transition temperature of the structural instability of the system increases nonlinearly to higher temperatures with increasing x. This is interpreted theoretically by a substantial alteration in the dynamics caused by a change in the double-well potential from broad and shallow to narrow and deep.Comment: 15 pages, 5 figure

    Stressor-Induced Increase in Muscle Fatigability of Young Men and Women is Predicted by Strength but Not Voluntary Activation

    Get PDF
    This study investigated mechanisms for the stressor-induced changes in muscle fatigability in men and women. Participants performed an isometric-fatiguing contraction at 20% maximal voluntary contraction (MVC) until failure with the elbow flexor muscles. Study one (n = 55; 29 women) involved two experimental sessions: 1) a high-stressor session that required a difficult mental-math task before and during a fatiguing contraction and 2) a control session with no mental math. For some participants (n = 28; 14 women), cortical stimulation was used to examine mechanisms that contributed to muscle fatigability during the high-stressor and control sessions. Study two (n = 23; nine women) determined the influence of a low stressor, i.e., a simple mental-math task, on muscle fatigability. In study one, the time-to-task failure was less for the high-stressor session than control (P \u3c 0.05) for women (19.4%) and men (9.5%): the sex difference response disappeared when covaried for initial strength (MVC). MVC force, voluntary activation, and peak-twitch amplitude decreased similarly for the control and high-stressor sessions (P \u3c 0.05). In study two, the time-to-task failure of men or women was not influenced by the low stressor (P \u3e 0.05). The greater fatigability, when exposed to a high stressor during a low-force task, was not exclusive to women but involved a strength-related mechanism in both weaker men and women that accelerated declines in voluntary activation and slowing of contractile properties

    Stressor-Induced Increase in Muscle Fatigability of Young Men and Women is Predicted by Strength but Not Voluntary Activation

    Get PDF
    This study investigated mechanisms for the stressor-induced changes in muscle fatigability in men and women. Participants performed an isometric-fatiguing contraction at 20% maximal voluntary contraction (MVC) until failure with the elbow flexor muscles. Study one (n = 55; 29 women) involved two experimental sessions: 1) a high-stressor session that required a difficult mental-math task before and during a fatiguing contraction and 2) a control session with no mental math. For some participants (n = 28; 14 women), cortical stimulation was used to examine mechanisms that contributed to muscle fatigability during the high-stressor and control sessions. Study two (n = 23; nine women) determined the influence of a low stressor, i.e., a simple mental-math task, on muscle fatigability. In study one, the time-to-task failure was less for the high-stressor session than control (P \u3c 0.05) for women (19.4%) and men (9.5%): the sex difference response disappeared when covaried for initial strength (MVC). MVC force, voluntary activation, and peak-twitch amplitude decreased similarly for the control and high-stressor sessions (P \u3c 0.05). In study two, the time-to-task failure of men or women was not influenced by the low stressor (P \u3e 0.05). The greater fatigability, when exposed to a high stressor during a low-force task, was not exclusive to women but involved a strength-related mechanism in both weaker men and women that accelerated declines in voluntary activation and slowing of contractile properties

    Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In1x_{1-x}Cdx_x)5_5

    Full text link
    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1x_{1-x}Cdx_x)5_5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.Comment: Article + Supplementary information 33 pages, 13 figure

    Direct evidence for the emergence of a pressure induced nodal superconducting gap in the iron-based superconductor Ba_0.65Rb_0.35Fe_2As_2

    Get PDF
    Identifying the superconducting (SC) gap structure of the iron-based high-temperature superconductors (Fe-HTS's) remains a key issue for the understanding of superconductivity in these materials. In contrast to other unconventional superconductors, in the Fe-HTS's both dd-wave and extended s-wave pairing symmetries are close in energy, with the latter believed to be generally favored over the former. Probing the proximity between these very different SC states and identifying experimental parameters that can tune them, are of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth (lambda) in the optimally doped Fe-HTS Ba_0.65Rb_0.35Fe_2As_2. At ambient pressure this material is known to be a nodeless s-wave superconductor. Upon pressure a strong decrease of (lambda) is observed, while the SC transition temperature remains nearly constant. More importantly, the low-temperature behavior of (1/lambda^{2}) changes from exponential saturation at zero pressure to a power-law with increasing pressure, providing unambiguous evidence that hydrostatic pressure promotes nodal SC gaps. Comparison to microscopic models favors a d-wave over a nodal s^{+-}-wave pairing as the origin of the nodes. Our results provide a new route of understanding the complex topology of the SC gap in Fe-HTS's.Comment: 33 pages and 12 figures (including supplementary information
    corecore