30 research outputs found

    Statistical Thermodynamics of Polymer Quantum Systems

    Full text link
    Polymer quantum systems are mechanical models quantized similarly as loop quantum gravity. It is actually in quantizing gravity that the polymer term holds proper as the quantum geometry excitations yield a reminiscent of a polymer material. In such an approach both non-singular cosmological models and a microscopic basis for the entropy of some black holes have arisen. Also important physical questions for these systems involve thermodynamics. With this motivation, in this work, we study the statistical thermodynamics of two one dimensional {\em polymer} quantum systems: an ensemble of oscillators that describe a solid and a bunch of non-interacting particles in a box, which thus form an ideal gas. We first study the spectra of these polymer systems. It turns out useful for the analysis to consider the length scale required by the quantization and which we shall refer to as polymer length. The dynamics of the polymer oscillator can be given the form of that for the standard quantum pendulum. Depending on the dominance of the polymer length we can distinguish two regimes: vibrational and rotational. The first occur for small polymer length and here the standard oscillator in Schr\"odinger quantization is recovered at leading order. The second one, for large polymer length, features dominant polymer effects. In the case of the polymer particles in the box, a bounded and oscillating spectrum that presents a band structure and a Brillouin zone is found. The thermodynamical quantities calculated with these spectra have corrections with respect to standard ones and they depend on the polymer length. For generic polymer length, thermodynamics of both systems present an anomalous peak in their heat capacity CVC_V

    On Loop Quantum Gravity Phenomenology and the Issue of Lorentz Invariance

    Get PDF
    A simple model is constructed which allows to compute modified dispersion relations with effects from loop quantum gravity. Different quantization choices can be realized and their effects on the order of corrections studied explicitly. A comparison with more involved semiclassical techniques shows that there is agreement even at a quantitative level. Furthermore, by contrasting Hamiltonian and Lagrangian descriptions we show that possible Lorentz symmetry violations may be blurred as an artifact of the approximation scheme. Whether this is the case in a purely Hamiltonian analysis can be resolved by an improvement in the effective semiclassical analysis.Comment: 16 pages, RevTeX

    Quantum gravity corrections to neutrino propagation

    Get PDF
    Massive spin-1/2 fields are studied in the framework of loop quantum gravity by considering a state approximating, at a length scale L\cal L much greater than Planck length P=1.2×1033\ell_P=1.2\times 10^{-33}cm, a spin-1/2 field in flat spacetime. The discrete structure of spacetime at P\ell_P yields corrections to the field propagation at scale L\cal L. Next, Neutrino Bursts (pˉ105{\bar p}\approx 10^5GeV) accompaning Gamma Ray Bursts that have travelled cosmological distances, L1010L\approx 10^{10}l.y., are considered. The dominant correction is helicity independent and leads to a time delay w.r.t. the speed of light, cc, of order (pˉP)L/c104({\bar p} \ell_P) L/c\approx 10^4s. To next order in pˉP{\bar p} \ell_P the correction has the form of the Gambini and Pullin effect for photons. Its contribution to time delay is comparable to that caused by the mass term. Finally, a dependence Los1pˉ2PL_{\rm os}^{-1} \propto {\bar p}^2 \ell_P is found for a two-flavour neutrino oscillation length.Comment: RevTeX, 5pp, no figures. Notation of a sum in Eq.(2) improved. Slight modifications in redaction. Final version to appear in Phys. Rev. Let

    Casimir force for a scalar field in warped brane worlds

    Full text link
    In looking for imprints of extra dimensions in brane world models one usually builts these so that they are compatible with known low energy physics and thus focuses on high energy effects. Nevertheless, just as submillimeter Newton's law tests probe the mode structure of gravity other low energy tests might apply to matter. As a model example, in this work we determine the 4D Casimir force corresponding to a scalar field subject to Dirichlet boundary conditions on two parallel planes lying within the single brane of a Randall-Sundrum scenario extended by one compact extra dimension. Using the Green's function method such a force picks the contribution of each field mode as if it acted individually but with a weight given by the square of the mode wave functions on the brane. In the low energy regime one regains the standard 4D Casimir force that is associated to a zero mode in the massless case or to a quasilocalized or resonant mode in the massive one whilst the effect of the extra dimensions gets encoded as an additional term.Comment: 22 pages, 2 figure

    Reality conditions for Ashtekar variables as Dirac constraints

    Get PDF
    We show that the reality conditions to be imposed on Ashtekar variables to recover real gravity can be implemented as second class constraints a la Dirac. Thus, counting gravitational degrees of freedom follows accordingly. Some constraints of the real theory turn out to be non-polynomial, regardless of the form, polynomial or non-polynomial, taken for the reality conditions. We comment upon the compatibility of our approach with the recently proposed Wick transform point of view, as well as on some alternatives for dealing with such second class constraints.Comment: 16 pages, plain LaTeX, submitted to Class. Quant. Grav. E-mail: [email protected]

    Self-Dual Action for Fermionic Fields and Gravitation

    Get PDF
    This paper studies the self-dual Einstein-Dirac theory. A generalization is obtained of the Jacobson-Smolin proof of the equivalence between the self-dual and Palatini purely gravitational actions. Hence one proves equivalence of self-dual Einstein-Dirac theory to the Einstein-Cartan-Sciama-Kibble-Dirac theory. The Bianchi symmetry of the curvature, core of the proof, now contains a non-vanishing torsion. Thus, in the self-dual framework, the extra terms entering the equations of motion with respect to the standard Einstein-Dirac field equations, are neatly associated with torsion.Comment: 13 pages, plain-tex, recently appearing in Nuovo Cimento B, volume 109, pages 973-982, September 199
    corecore