27,552 research outputs found

    Saturn’s axisymmetric field: A low Rm nonlinear analysis

    Get PDF

    A study into annotation ranking metrics in geo-tagged image corpora

    Get PDF
    Community contributed datasets are becoming increasingly common in automated image annotation systems. One important issue with community image data is that there is no guarantee that the associated metadata is relevant. A method is required that can accurately rank the semantic relevance of community annotations. This should enable the extracting of relevant subsets from potentially noisy collections of these annotations. Having relevant, non heterogeneous tags assigned to images should improve community image retrieval systems, such as Flickr, which are based on text retrieval methods. In the literature, the current state of the art approach to ranking the semantic relevance of Flickr tags is based on the widely used tf-idf metric. In the case of datasets containing landmark images, however, this metric is inefficient due to the high frequency of common landmark tags within the data set and can be improved upon. In this paper, we present a landmark recognition framework, that provides end-to-end automated recognition and annotation. In our study into automated annotation, we evaluate 5 alternate approaches to tf-idf to rank tag relevance in community contributed landmark image corpora. We carry out a thorough evaluation of each of these ranking metrics and results of this evaluation demonstrate that four of these proposed techniques outperform the current commonly-used tf-idf approach for this task

    Visual and geographical data fusion to classify landmarks in geo-tagged images

    Get PDF
    High level semantic image recognition and classification is a challenging task and currently is a very active research domain. Computers struggle with the high level task of identifying objects and scenes within digital images accurately in unconstrained environments. In this paper, we present experiments that aim to overcome the limitations of computer vision algorithms by combining them with novel contextual based features to describe geo-tagged imagery. We adopt a machine learning based algorithm with the aim of classifying classes of geographical landmarks within digital images. We use community contributed image sets downloaded from Flickr and provide a thorough investigation, the results of which are presented in an evaluation section

    Perceptual-gestural (mis)mapping in serial short-term memory: The impact of talker variability

    Get PDF
    The mechanisms underlying the poorer serial recall of talker-variable lists (e.g., alternating female–male voices) as compared with single-voice lists were examined. We tested the novel hypothesis that this talker variability effect arises from the tendency for perceptual organization to partition the list into streams based on voice such that the representation of order maps poorly onto the formation of a gestural sequence-output plan assembled in support of the reproduction of the true temporal order of the items. In line with the hypothesis, (a) the presence of a spoken lead-in designed to further promote by-voice perceptual partitioning accentuates the effect (Experiments 1 and 2); (b) the impairment is larger the greater the acoustic coherence is between nonadjacent items: Alternating-voice lists are more poorly recalled than four-voice lists (Experiment 3); and (c) talker variability combines nonadditively with phonological similarity, consistent with the view that both variables disrupt sequence output planning (Experiment 4). The results support the view that serial short-term memory performance reflects the action of sequencing processes embodied within general-purpose perceptual input-processing and gestural output-planning systems

    Retrieval from memory: Vulnerable or inviolable?

    Get PDF
    We show that retrieval from semantic memory is vulnerable even to the mere presence of speech. Irrelevant speech impairs semantic fluency—namely, lexical retrieval cued by a semantic category name—but only if it is meaningful (forward speech compared to reversed speech or words compared to nonwords). Moreover, speech related semantically to the retrieval category is more disruptive than unrelated speech. That phonemic fluency—in which participants are cued with the first letter of words they are to report—was not disrupted by the mere presence of meaningful speech, only by speech in a related phonemic category, suggests that distraction is not mediated by executive processing load. The pattern of sensitivity to different properties of sound as a function of the type of retrieval cue is in line with an interference-by-process approach to auditory distraction

    Analyzing image-text relations for semantic media adaptation and personalization

    Get PDF
    Progress in semantic media adaptation and personalisation requires that we know more about how different media types, such as texts and images, work together in multimedia communication. To this end, we present our ongoing investigation into image-text relations. Our idea is that the ways in which the meanings of images and texts relate in multimodal documents, such as web pages, can be classified on the basis of low-level media features and that this classification should be an early processing step in systems targeting semantic multimedia analysis. In this paper we present the first empirical evidence that humans can predict something about the main theme of a text from an accompanying image, and that this prediction can be emulated by a machine via analysis of low- level image features. We close by discussing how these findings could impact on applications for news adaptation and personalisation, and how they may generalise to other kinds of multimodal documents and to applications for semantic media retrieval, browsing, adaptation and creation

    The alpha-effect in rotating convection: a comparison of numerical simulations

    Full text link
    Numerical simulations are an important tool in furthering our understanding of turbulent dynamo action, a process that occurs in a vast range of astrophysical bodies. It is important in all computational work that comparisons are made between different codes and, if non-trivial differences arise, that these are explained. Kapyla et al (2010: MNRAS 402, 1458) describe an attempt to reproduce the results of Hughes & Proctor (2009: PRL 102, 044501) and, by employing a different methodology, they arrive at very different conclusions concerning the mean electromotive force and the generation of large-scale fields. Here we describe why the simulations of Kapyla et al (2010) are simply not suitable for a meaningful comparison, since they solve different equations, at different parameter values and with different boundary conditions. Furthermore we describe why the interpretation of Kapyla et al (2010) of the calculation of the alpha-effect is inappropriate and argue that the generation of large-scale magnetic fields by turbulent convection remains a problematic issue.Comment: Submitted to MNRAS. 5 pages, 3 figure

    Simulations of Nonthermal Electron Transport in Multidimensional Flows: Synthetic Observations of Radio Galaxies

    Full text link
    We have applied an effective numerical scheme for cosmic-ray transport to 3D MHD simulations of jet flow in radio galaxies (see the companion paper by Jones et al. 1999). The marriage of relativistic particle and 3D magnetic field information allows us to construct a rich set of ``synthetic observations'' of our simulated objects. The information is sufficient to calculate the ``true'' synchrotron emissivity at a given frequency using explicit information about the relativistic electrons. This enables us to produce synchrotron surface-brightness maps, including polarization. Inverse-Compton X-ray surface-brightness maps may also be produced. First results intended to explore the connection between jet dynamics and electron transport in radio lobes are discussed. We infer lobe magnetic field values by comparison of synthetically observed X-ray and synchrotron fluxes, and find these ``inverse-Compton'' fields to be quite consistent with the actual RMS field averaged over the lobe. The simplest minimum energy calculation from the synthetic observations also seems to agree with the actual simulated source properties.Comment: 7 pages, 1 figure; to appear in Life Cycles of Radio Galaxies, ed. J. Biretta et al., New Astronomy Review
    • 

    corecore