1,599 research outputs found

    Mapping of water-related ecosystem services in the uMngeni catchment using a daily time-step hydrological model for prioritisation of ecological infrastructure investment – Part 1: Context and modelling approach

    Get PDF
    South Africa is a semi-arid country which frequently faces water shortages, and experienced a severe drought in the 2016 and 2017 rainfall seasons. Government is under pressure to continue to deliver clean water to the growing population at a high assurance of supply. Studies now show that the delivery of water may be sustained not only through built infrastructure such as dams and pipelines, but also through investment in ecological infrastructure (EI). A daily time-step hydrological model was used to map areas which should be prioritised for protection or rehabilitation to sustain the delivery of water-related ecosystem services within the uMngeni catchment. We focused on three water-related ecosystem services, i.e.: water supply, sustained baseflow, erosion control/avoidance of excessive sediment losses. The two key types of degradation were modelled, namely, overgrazing and the invasion of upland areas by Black Wattle (Acacia mearnsii). This, Part 1 of a paper in 2 parts, provides a discussion on the role of EI in delivering water-related ecosystem services, describes the motivation for the study, and the methods used in modelling and mapping the catchment. The results of this modelling exercise are presented in Part 2, which also explores and illustrates the potential hydrological benefits of rehabilitation and protection of EI in the uMngeni Catchment.Keywords: water, ecosystem services, hydrological modelling, ecological infrastructure, water securit

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    Upper Pleistocene Stratigraphy, Paleoecology, and Archaeology of the Northern Yukon Interior, Eastern Beringia. I. Bonnet Plume Basin

    Get PDF
    New stratigraphic and chronometric data show that Bonnet Plume Basin, in northeastern Yukon Territory, was glaciated in late Wisconsinan time rather than during an earlier advance of Laurentide ice. This conclusion has important ramifications not only for the interpretation of all-time glacial limits farther north along the Richardson Mountains but also for non-glaciated basins in the Porcupine drainage to the northwest. The late Wisconsinan glacial episode in Bonnet Plume Basin is here named the Hungry Creek advance after the principal Quaternary section in the basin. Sediments beneath the till at Hungry Creek have produced well-produced pollen, plant macrofossils, insects, and a few vertebrate remains. The plant and invertebrate fossils provide a detailed, if temporally restricted, record of a portion of the mid-Wisconsinan interstadial, while the vertebrate fossils include the oldest Yukon specimen of the Yukon wild ass. Some of the mid-Wisconsinan sediments have also yielded distinctive chert flakes that represent either a previously unreported product of natural fracturing or a by-product of stone tool manufacture by human residents of Bonnet Plume Basin. In addition to presenting new data on these diverse but interrelated topics, this paper serves as an introduction to a series of reports that will treat in turn the Upper Pleistocene record of Bluefish, Old Crow, and Bell basins, respectively.&nbsp

    Chalcogenide glasses for photonics device applications

    No full text
    Chalcogenides are compounds formed predominately from one or more of the chalcogen elements; sulphur, selenium and tellurium. Although first studied over fifty years ago, interest in chalcogenide glasses has, over the past few years, increased significantly as glasses, crystals and alloys find new life in a wide range of photonic devices. This chapter begins with an overview of chalcogenide glass compositions, their purification, synthesis and fabrication. Focussing on more novel gallium lanthanum sulphide based chalcogenides, as well as reviewing more established materials such as arsenic trisulphide based glasses we then explore the purification and synthesis of these materials, along with their basic optical and thermal properties. Next the fabrication of these versatile glasses into a variety of forms; including thin films, microspheres and optical fibers is explained. This chapter ends with an overview of representative applications of these exciting optoelectronic materials

    Block-Transitive Designs in Affine Spaces

    Full text link
    This paper deals with block-transitive tt-(v,k,λ)(v,k,\lambda) designs in affine spaces for large tt, with a focus on the important index λ=1\lambda=1 case. We prove that there are no non-trivial 5-(v,k,1)(v,k,1) designs admitting a block-transitive group of automorphisms that is of affine type. Moreover, we show that the corresponding non-existence result holds for 4-(v,k,1)(v,k,1) designs, except possibly when the group is one-dimensional affine. Our approach involves a consideration of the finite 2-homogeneous affine permutation groups.Comment: 10 pages; to appear in: "Designs, Codes and Cryptography

    Assessing ice sheet models against the landform record: the Likelihood of Accordant Lineations Analysis (LALA) tool

    Get PDF
    Palaeo-ice sheets leave behind a rich database regarding their past behaviour, recorded in the landscape in the form of glacial geomorphology. The most numerous landform created by these ice sheets are subglacial lineations, which generate snapshots of the direction of ice flow at fixed (yet typically unknown) points in time. Despite their relative density within the landform record, the information provided by subglacial lineations is currently underutilised in tests of numerical ice sheet models. To some extent, this is a consequence of ongoing debate regarding lineation formation, but predominantly, it reflects the lack of rigorous model-data comparison techniques that would enable lineation information to be properly integrated. Here, we present the Likelihood of Accordant Lineations Analysis (LALA) tool. LALA provides a statistically rigorous measure of the log-likelihood of a supplied ice sheet simulation through comparison of simulation output with both the location and direction of observed lineations. Given an ensemble of ice sheet simulations, LALA provides a formal, and statistically underpinned, quantitative assessment of each simulation's quality-of-fit to mapped lineations. This enables a comparison of each simulation's relative plausibility, including identification of the most likely ice sheet simulations amongst the ensemble. This is achieved by modelling lineation formation as a marked Poisson point process and comparison of observed to modelled flow directions using the von Mises distribution. LALA is flexible—users can adapt parameters to account for differing assumptions regarding lineation formation, and for variations in the level of precision required for differing model-data comparison experiments. We provide guidelines and rationale for assigning parameter values, including an assessment of the variability between users when mapping lineations. Finally, we demonstrate the utility of LALA through application to an ensemble of simulations of the last British-Irish Ice Sheet. This comparison highlights the benefits of LALA over previous tools and demonstrates some of the considerations of experimental design required when identifying the fit between ice sheet model simulations and the landform record

    No Far-Infrared-Spectroscopic Gap in Clean and Dirty High-TC_C Superconductors

    Full text link
    We report far infrared transmission measurements on single crystal samples derived from Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8}. The impurity scattering rate of the samples was varied by electron-beam irradiation, 50MeV 16^{16}O+6^{+6} ion irradiation, heat treatment in vacuum, and Y doping. Although substantial changes in the infrared spectra were produced, in no case was a feature observed that could be associated with the superconducting energy gap. These results all but rule out ``clean limit'' explanations for the absence of the spectroscopic gap in this material, and provide evidence that the superconductivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} is gapless.Comment: 4 pages and 3 postscript figures attached. REVTEX v3.0. Accepted for publication in Phys. Rev. Lett. IRDIRT

    Quantum cryptography using balanced homodyne detection

    Full text link
    We report an experimental quantum key distribution that utilizes balanced homodyne detection, instead of photon counting, to detect weak pulses of coherent light. Although our scheme inherently has a finite error rate, it allows high-efficiency detection and quantum state measurement of the transmitted light using only conventional devices at room temperature. When the average photon number was 0.1, an error rate of 0.08 and "effective" quantum efficiency of 0.76 were obtained.Comment: Errors in the sentence citing ref.[20] are correcte

    Effect of Weld Schedule on the Residual Stress Distribution of Boron Steel Spot Welds

    Get PDF
    Press-hardened boron steel has been utilized in anti-intrusion systems in automobiles, providing high strength and weight-saving potential through gage reduction. Boron steel spot welds exhibit a soft heat-affected zone which is surrounded by a hard nugget and outlying base material. This soft zone reduces the strength of the weld and makes it susceptible to failure. Additionally, different welding regimes lead to significantly different hardness distributions, making failure prediction difficult. Boron steel sheets, welded with fixed and adaptive schedules, were characterized. These are the first experimentally determined residual stress distributions for boron steel resistance spot welds which have been reported. Residual strains were measured using neutron diffraction, and the hardness distributions were measured on the same welds. Additionally, similar measurements were performed on spot welded DP600 steel as a reference material. A correspondence between residual stress and hardness profiles was observed for all welds. A significant difference in material properties was observed between the fixed schedule and adaptively welded boron steel samples, which could potentially lead to a difference in failure loads between the two boron steel welds
    • …
    corecore