49,687 research outputs found

    Pre-design study for a modern four-bladed rotor for the Rotor System Research Aircraft (RSRA)

    Get PDF
    Various candidate rotor systems were compared in an effort to select a modern four-bladed rotor for the RSRA. The YAH-64 rotor system was chosen as the candidate rotor system for further development for the RSRA. The process used to select the rotor system, studies conducted to mate the rotor with the RSRA and provide parametric variability, and the development plan which would be used to implement these studies are presented. Drawings are included

    Systematics of black hole binary inspiral kicks and the slowness approximation

    Get PDF
    During the inspiral and merger of black holes, the interaction of gravitational wave multipoles carries linear momentum away, thereby providing an astrophysically important recoil, or "kick" to the system and to the final black hole remnant. It has been found that linear momentum during the last stage (quasinormal ringing) of the collapse tends to provide an "antikick" that in some cases cancels almost all the kick from the earlier (quasicircular inspiral) emission. We show here that this cancellation is not due to peculiarities of gravitational waves, black holes, or interacting multipoles, but simply to the fact that the rotating flux of momentum changes its intensity slowly. We show furthermore that an understanding of the systematics of the emission allows good estimates of the net kick for numerical simulations started at fairly late times, and is useful for understanding qualitatively what kinds of systems provide large and small net kicks.Comment: 15 pages, 6 figures, 2 table

    Black hole binary inspiral and trajectory dominance

    Full text link
    Gravitational waves emitted during the inspiral, plunge and merger of a black hole binary carry linear momentum. This results in an astrophysically important recoil to the final merged black hole, a ``kick'' that can eject it from the nucleus of a galaxy. In a previous paper we showed that the puzzling partial cancellation of an early kick by a late antikick, and the dependence of the cancellation on black hole spin, can be understood from the phenomenology of the linear momentum waveforms. Here we connect that phenomenology to its underlying cause, the spin-dependence of the inspiral trajectories. This insight suggests that the details of plunge can be understood more broadly with a focus on inspiral trajectories.Comment: 15 pages, 12 figure

    Directed Random Walk on the Lattices of Genus Two

    Full text link
    The object of the present investigation is an ensemble of self-avoiding and directed graphs belonging to eight-branching Cayley tree (Bethe lattice) generated by the Fucsian group of a Riemann surface of genus two and embedded in the Pincar\'e unit disk. We consider two-parametric lattices and calculate the multifractal scaling exponents for the moments of the graph lengths distribution as functions of these parameters. We show the results of numerical and statistical computations, where the latter are based on a random walk model.Comment: 17 pages, 8 figure

    A statistical study of the global structure of the ring current

    Get PDF
    [1] In this paper we derive the average configuration of the ring current as a function of the state of the magnetosphere as indicated by the Dst index. We sort magnetic field data from the Combined Release and Radiation Effects Satellite (CRRES) by spatial location and by the Dst index in order to produce magnetic field maps. From these maps we calculate local current systems by taking the curl of the magnetic field. We find both the westward (outer) and the eastward (inner) components of the ring current. We find that the ring current intensity varies linearly with Dst as expected and that the ring current is asymmetric for all Dst values. The azimuthal peak of the ring current is located in the afternoon sector for quiet conditions and near midnight for disturbed conditions. The ring current also moves closer to the Earth during disturbed conditions. We attempt to recreate the Dst index by integrating the magnetic perturbations caused by the ring current. We find that we need to multiply our computed disturbance by a factor of 1.88 ± 0.27 and add an offset of 3.84 ± 4.33 nT in order to get optimal agreement with Dst. When taking into account a tail current contribution of roughly 25%, this agrees well with our expectation of a factor of 1.3 to 1.5 based on a partially conducting Earth. The offset that we have to add does not agree well with an expected offset of approximately 20 nT based on solar wind pressure
    corecore