1,813 research outputs found

    The University of Michigan Centimeter-Band All Stokes Blazar Monitoring Program: Single-Dish Polarimetry as a Probe of Parsec-Scale Magnetic Fields

    Full text link
    The University of Michigan 26-m paraboloid was dedicated to obtaining linear polarization and total flux density observations of blazars from the mid-1960s until June 2012 providing an unprecedented record tracking centimeter-band variability over decades at 14.5, 8.0, and 4.8 GHz for both targeted objects and members of flux-limited samples. In the mid-1970s through the mid-1980s, and during the last decade of the program, observations were additionally obtained of circular polarization for a small sample of radio-bright (S>5Jy), active sources. Key program results include evidence supporting class-dependent differences in the magnetic field geometry of BL Lac and QSO jets, identification of linear polarization changes temporally associated with flux outbursts supporting a shock-in-jet scenario, and determination of the spectral evolution of the Stokes V amplitude and polarity for testing proposed models. Recent radiative transfer modeling during large flares supports a jet scenario with a kinetically-dominated, relativistic flow at parsec scales with embedded turbulent magnetic fields and dynamically-weak ordered components which may be helical; the circular polarization observations are consistent with linear-to-circular mode conversion within this turbulent jet environment.Comment: 8 pages, 4 figures, Proceedings of the conference "Polarised Emission from Astrophysical Jets", June 12-16, 2017, Ierapetra, Greece, eds. E. Angelakis, M. Boettcher, and J.-L. Gome

    Constraints on Blazar Jet Conditions During Gamma-Ray Flaring from Radiative Transfer Modeling

    Full text link
    As part of a program to investigate jet flow conditions during GeV gamma-ray flares detected by Fermi, we are using UMRAO multi-frequency, centimeter-band total flux density and linear polarization monitoring observations to constrain radiative transfer models incorporating propagating shocks orientated at an arbitrary angle to the flow direction. We describe the characteristics of the model, illustrate how the data are used to constrain the models, and present results for three program sources with diverse characteristics: PKS 0420-01, OJ 287, and 1156+295. The modeling of the observed spectral behavior yields information on the sense, strength and orientation of the shocks producing the radio-band flaring; on the energy distribution of the radiating particles; and on the observer's viewing angle with respect to the jet independent of VLBI data. We present evidence that, while a random component dominates the jet magnetic field, a distinguishing feature of those radio events with an associated gamma-ray flare is the presence of a weak but non-negligible ordered magnetic field component along the jet axis.Comment: 6 pages, 4 figures. To appear in the proceedings of "The Innermost Regions of Relativistic Jets and Their Magnetic Fields", Granada, Spai

    The Cross-Wavelet Transform and Analysis of Quasiperiodic Behavior in the Pearson-Readhead VLBI Survey Sources

    Get PDF
    We introduce an algorithm for applying a cross-wavelet transform to analysis of quasiperiodic variations in a time-series, and introduce significance tests for the technique. We apply a continuous wavelet transform and the cross-wavelet algorithm to the Pearson-Readhead VLBI survey sources using data obtained from the University of Michigan 26-m parabloid at observing frequencies of 14.5, 8.0, and 4.8 GHz. Thirty of the sixty-two sources were chosen to have sufficient data for analysis, having at least 100 data points for a given time-series. Of these thirty sources, a little more than half exhibited evidence for quasiperiodic behavior in at least one observing frequency, with a mean characteristic period of 2.4 yr and standard deviation of 1.3 yr. We find that out of the thirty sources, there were about four time scales for every ten time series, and about half of those sources showing quasiperiodic behavior repeated the behavior in at least one other observing frequency.Comment: Revised version, accepted by ApJ. 17 pages, 13 figures, color figures included as gifs, seperate from the text. The addition of statistical significance tests has resulted in modifying the technique and results, but the broad conclusion remain the same. A high resolution version may be found at http://www.astro.lsa.umich.edu/obs/radiotel/prcwdata.htm

    Radio Band Observations of Blazar Variability

    Full text link
    The properties of blazar variability in the radio band are studied using the unique combination of temporal resolution from single dish monitoring and spatial resolution from VLBA imaging; such measurements, now available in all four Stokes parameters, together with theoretical simulations, identify the origin of radio band variability and probe the characteristics of the radio jet where the broadband blazar emission originates. Outbursts in total flux density and linear polarization in the optical-to-radio bands are attributed to shocks propagating within the jet spine, in part based on limited modeling invoking transverse shocks; new radiative transfer simulations allowing for shocks at arbitrary angle to the flow direction confirm this picture by reproducing the observed centimeter-band variations observed more generally, and are of current interest since these shocks may play a role in the gamma-ray flaring detected by Fermi. Recent UMRAO multifrequency Stokes V studies of bright blazars identify the spectral variability properties of circular polarization for the first time and demonstrate that polarity flips are relatively common. All-Stokes data are consistent with the production of circular polarization by linear-to-circular mode conversion in a region that is at least partially self-absorbed. Detailed analysis of single-epoch, multifrequency, all-Stokes VLBA observations of 3C 279 support this physical picture and are best explained by emission from an electron-proton plasma.Comment: 6 pages, 5 figures, uses, jaa.sty. Invited talk presented at the conference Multifrequency Variability of Blazars, Guangzhou, China, September 22-24, 2010. To appear in J. Astrophys. Ast

    Quasinormal mode approach to modelling light-emission and propagation in nanoplasmonics

    Get PDF
    We describe a powerful and intuitive technique for modeling light-matter interactions in classical and quantum nanoplasmonics. Our approach uses a quasinormal mode expansion of the Green function within a metal nanoresonator of arbitrary shape, together with a Dyson equation, to derive an expression for the spontaneous decay rate and far field propagator from dipole oscillators outside resonators. For a single quasinormal mode, at field positions outside the quasi-static coupling regime, we give a closed form solution for the Purcell factor and generalized effective mode volume. We augment this with an analytic expression for the divergent LDOS very near the metal surface, which allows us to derive a simple and highly accurate expression for the electric field outside the metal resonator at distances from a few nanometers to infinity. This intuitive formalism provides an enormous simplification over full numerical calculations and fixes several pending problems in quasinormal mode theory

    A sensing platform for physiological and contextual feedback to tennis athletes

    Get PDF
    In this paper we describe our work on creating a multi-modal sensing platform for providing feedback to tennis coaches and players. The platform includes a fixed installation around a tennis court consisting of a video camera network and a localisation system as well as wearable sensing technology deployed to individual athletes. We describe the various components of this platform and explain how we can capture synchronised multi-modal sensor data streams for games or training sessions. We then describe the content-based retrieval system we are building to facilitate the development of novel coaching tools. We provide some examples of the queries that the system can support, where these queries are chosen to be suitably expressive so as to reflect a coach's complex information needs regarding tennis-related performance factors

    Oblique Shocks As The Origin Of Radio To Gamma-ray Variability In AGN

    Full text link
    The `shock in jet' model for cm-waveband blazar variability is revisited, allowing for arbitrary shock orientation with respect to the jet flow direction, and both random and ordered magnetic field. It is shown that oblique shocks can explain events with swings in polarization position angle much less than the 90 deg. associated with transverse structures, while retaining the general characteristics of outbursts, including spectral behavior and level of peak percentage polarization. Models dominated by a force-free, minimum energy magnetic field configuration (essentially helical) display a shallow rise in percentage polarization and frequency dependent swing in polarization position angle not in agreement with the results of single-dish monitoring observations, implying that the field is predominantly random in the quiescent state. Outbursts well-explained by the `shock in jet' model are present during gamma-ray flaring in several sources, supporting the idea that shock events are responsible for activity from the radio to gamma-ray bands.Comment: 19 pages, 8 figures, accepted for publication in Ap

    Environmental Drivers of Holocene Forest Development in the Middle Atlas, Morocco

    Get PDF
    In semi-arid regions subject to rising temperatures and drought, palaeoecological insights into past vegetation dynamics under a range of boundary conditions are needed to develop our understanding of environmental responses to climatic changes. Here, we present a new high-resolution record of vegetation history and fire activity spanning the last 12,000 years from Lake Sidi Ali in the southern Middle Atlas Mountains, Morocco. The record is underpinned by a robust AMS radiocarbon and 210Pb/137Cs chronology and multi-proxy approach allowing direct comparison of vegetation, hydroclimate, and catchment tracers. The record reveals the persistence of steppic landscapes until 10,340 cal yr BP, prevailing sclerophyll woodland with evergreen Quercus until 6,300 cal yr BP, predominance of montane conifers (Cedrus and Cupressaceae) until 1,300 cal yr BP with matorralization and increased fire activity from 4,320 cal yr BP, and major reduction of forest cover after 1,300 cal yr BP. Detailed comparisons between the pollen record of Lake Sidi Ali (2,080m a.s.l.) and previously published data from nearby Tigalmamine (1,626m a.s.l.) highlight common patterns of vegetation change in response to Holocene climatic and anthropogenic drivers, as well as local differences relating to elevation and bioclimate contrasts between the sites. Variability in evergreen Quercus and Cedrus at both sites supports a Holocene summer temperature maximum between 9,000 and 7,000 cal yr BP in contrast with previous large-scale pollen-based climate reconstructions, and furthermore indicates pervasive millennial temperature variability. Millennial-scale cooling episodes are inferred from Cedrus expansion around 10,200, 8,200, 6,100, 4,500, 3,000, and 1,700 cal yr BP, and during the Little Ice Age (400 cal yr BP). A two-part trajectory of Late Holocene forest decline is evident, with gradual decline from 4,320 cal yr BP linked to synergism between pastoralism, increased fire and low winter rainfall, and a marked reduction from 1,300 cal yr BP, attributed to intensification of human activity around the Early Muslim conquest of Morocco. This trajectory, however, does not mask vegetation responses to millennial climate variability. The findings reveal the sensitive response ofMiddle Atlas forests to rapid climate changes and underscore the exposure of the montane forest ecosystems to future warming
    corecore