2,451 research outputs found
Recommended from our members
Blood-based bioenergetic profiling is related to differences in brain morphology in African Americans with Type 2 diabetes.
Blood-based bioenergetic profiling has promising applications as a minimally invasive biomarker of systemic bioenergetic capacity. In the present study, we examined peripheral blood mononuclear cell (PBMC) mitochondrial function and brain morphology in a cohort of African Americans with long-standing Type 2 diabetes. Key parameters of PBMC respiration were correlated with white matter, gray matter, and total intracranial volumes. Our analyses indicate that these relationships are primarily driven by the relationship of systemic bioenergetic capacity with total intracranial volume, suggesting that systemic differences in mitochondrial function may play a role in overall brain morphology
The anatomy of exhumed river-channel belts: Bedform to beltâscale river kinematics of the Ruby Ranch Member, Cretaceous Cedar Mountain Formation, Utah, USA
Many published interpretations of ancient fluvial systems have relied on observations of extensive outcrops of thick successions. This paper, in contrast, demonstrates that a regional understanding of palaeoriver kinematics, depositional setting and sedimentation rates can be interpreted from local sedimentological measurements of bedform and barform strata. Dune and bar strata, channel planform geometry and bed topography are measured within exhumed fluvial strata exposed as ridges in the Ruby Ranch Member of the Cretaceous Cedar Mountain Formation, Utah, USA. The ridges are composed of lithified stacked channel belts, representing at least five or six reâoccupations of a singleâstrand channel. Lateral sections reveal wellâpreserved barforms constructed of subaqueous dune crossâsets. The topography of palaeobarforms is preserved along the top surface of the outcrops. Comparisons of the channelâbelt centreline to local palaeotransport directions indicate that channel planform geometry was preserved through the reâoccupations, rather than being obscured by lateral migration. Rapid avulsions preserved the state of the active channel bed and its individual bars at the time of abandonment. Inferred minimum sedimentation durations for the preserved elements, inferred from crossâset thickness distributions and assumed bedform migration rates, vary within a belt from one to ten days. Using only these local sedimentological measurements, the depositional setting is interpreted as a fluvial megafan, given the similarity in river kinematics. This paper provides a systematic methodology for the future synthesis of vertical and planview data, including the droneâequipped 2020 Mars Rover mission, to exhumed fluvial and deltaic strata
Manganese Oxide Thin Films Prepared by Nonaqueous Sol-Gel Processing: Preferential Formation of Birnessite
High quality manganese oxide thin films with smooth surfaces and even thicknesses have been prepared with a nonaqueous solâgel process involving reduction of tetraethylammonium permanganate in methanol. Spin-coated films have been cast onto soft glass, quartz, and Ni foil substrates, with two coats being applied for optimum crystallization. The addition of alkali metal cations as dopants results in exclusive formation of the layered birnessite phase. By contrast, analogous reactions in bulk solâgel reactions yield birnessite, tunneled, and spinel phases depending on the dopant cation. XRD patterns confirm the formation of well-crystallized birnessite. SEM images of Li-, Na-, and Kâbirnessite reveal extremely smooth films having uniform thickness of less than 0.5 Îźm. Thin films of Rbâ and Csâbirnessite have more fractured and uneven surfaces as a result of some precipitation during the solâgel transformation. All films consist of densely packed particles of about 0.1 Îźm. When tetrabutylammonium permanganate is used instead of tetraethylammonium permanganate, the solâgel reaction yields amorphous manganese oxide as the result of diluted Mn sites in the xerogel film. Bilayer films have been prepared by casting an overcoat of Kâbirnessite onto an Naâbirnessite film. However, Auger depth profiling indicates considerable mixing between the adjacent layers
Observations of X-rays and Thermal Dust Emission from the Supernova Remnant Kes 75
We present Spitzer Space Telescope and Chandra X-ray Observatory observations
of the composite Galactic supernova remnant Kes 75 (G29.7-0.3). We use the
detected flux at 24 microns and hot gas parameters from fitting spectra from
new, deep X-ray observations to constrain models of dust emission, obtaining a
dust-to-gas mass ratio M_dust/M_gas ~0.001. We find that a two-component
thermal model, nominally representing shocked swept-up interstellar or
circumstellar material and reverse-shocked ejecta, adequately fits the X-ray
spectrum, albeit with somewhat high implied densities for both components. We
surmise that this model implies a Wolf-Rayet progenitor for the remnant. We
also present infrared flux upper limits for the central pulsar wind nebula.Comment: 7 pages, 2 tables, 4 figures, uses emulateapj. Accepted for
publication in Ap
An optically-heated atomic source for compact ion trap vacuum systems
We present a design for an atomic oven suitable for loading ion traps, which
is operated via optical heating with a continuous-wave multimode diode laser.
The absence of the low-resistance electrical connections necessary for Joule
heating allows the oven to be extremely well thermally isolated from the rest
of the vacuum system, and for an oven filled with calcium we achieve a number
density suitable for rapid ion loading in the target region with ~200 mW of
laser power, limited by radiative losses. With simple feedforward to the laser
power, the turn-on time for the oven is less than 20 s, while the oven contains
enough calcium to operate continuously for many thousands of years without
replenishment.Comment: 7 pages, 5 figure
Absence of CD59 in guinea pigs: Analysis of the Cavia porcellus genome suggests the evolution of a CD59 pseudogene
CD59 is a membrane-bound regulatory protein that inhibits the assembly of the terminal membrane attack complex (C5b-9) of complement. From its original discovery in humans almost 30 years ago, CD59 has been characterized in a variety of species, from primates to early vertebrates, such as teleost fish. CD59 is ubiquitous in mammals; however, we have described circumstantial evidence suggesting that guinea pigs (Cavia porcellus) lack CD59, at least on erythrocytes. In this study, we have used a combination of phylogenetic analyses with syntenic alignment of mammalian CD59 genes to identify the only span of genomic DNA in C. porcellus that is homologous to a portion of mammalian CD59 and show that this segment of DNA is not transcribed. We describe a pseudogene sharing homology to exons 2 through 5 of human CD59 present in the C. porcellus genome. This pseudogene was flanked by C. porcellus homologs of two genes, FBXO3 and ORF91, a relationship and orientation that were consistent with other known mammalian CD59 genes. Analysis using RNA sequencing confirmed that this segment of chromosomal DNA was not transcribed. We conclude that guinea pigs lack an intact gene encoding CD59; to our knowledge, this is the first report of a mammalian species that does not express a functional CD59. The pseudogene we describe is likely the product of a genomic deletion event during its evolutionary divergence from other members of the rodent order
Very Extended X-ray and H-alpha Emission in M82: Implications for the Superwind Phenomenon
We discuss the properties and implications of a 3.7x0.9 kpc region of
spatially-coincident X-ray and H-alpha emission about 11.6 kpc to the north of
the galaxy M82 previously discussed by Devine and Bally (1999). The PSPC X-ray
spectrum is fit by thermal plasma (kT=0.80+-0.17 keV) absorbed by only the
Galactic foreground column density. We evaluate the relationship of the
X-ray/H-alpha ridge to the M82 superwind. The main properties of the X-ray
emission can all be explained as being due to shock-heating driven as the
superwind encounters a massive ionized cloud in the halo of M82. This encounter
drives a slow shock into the cloud, which contributes to the excitation of the
observed H-alpha emission. At the same time, a fast bow-shock develops in the
superwind just upstream of the cloud, and this produces the observed X-ray
emission. This interpretation would imply that the superwind has an outflow
speed of roughly 800 km/s, consistent with indirect estimates based on its
general X-ray properties and the kinematics of the inner kpc-scale region of
H-alpha filaments. The gas in the M82 ridge is roughly two orders-of-magnitude
hotter than the minimum "escape temperature" at this radius, so this gas will
not be retained by M82.
(abridged)Comment: 24 pages (latex), 3 figures (2 gif files and one postscript),
accepted for publication in Part 1 of The Astrophysical Journa
The draft genome and transcriptome of Cannabis sativa
Background: Cannabis sativa has been cultivated throughout human history as a source of fiber, oil and food, and for its medicinal and intoxicating properties. Selective breeding has produced cannabis plants for specific uses, including high-potency marijuana strains and hemp cultivars for fiber and seed production. The molecular biology underlying cannabinoid biosynthesis and other traits of interest is largely unexplored. Results: We sequenced genomic DNA and RNA from the marijuana strain Purple Kush using shortread approaches. We report a draft haploid genome sequence of 534 Mb and a transcriptome of 30,000 genes. Comparison of the transcriptome of Purple Kush with that of the hemp cultivar 'Finola' revealed that many genes encoding proteins involved in cannabinoid and precursor pathways are more highly expressed in Purple Kush than in 'Finola'. The exclusive occurrence of \u3949-tetrahydrocannabinolic acid synthase in the Purple Kush transcriptome, and its replacement by cannabidiolic acid synthase in 'Finola', may explain why the psychoactive cannabinoid \u3949-tetrahydrocannabinol (THC) is produced in marijuana but not in hemp. Resequencing the hemp cultivars 'Finola' and 'USO-31' showed little difference in gene copy numbers of cannabinoid pathway enzymes. However, single nucleotide variant analysis uncovered a relatively high level of variation among four cannabis types, and supported a separation of marijuana and hemp. Conclusions: The availability of the Cannabis sativa genome enables the study of a multifunctional plant that occupies a unique role in human culture. Its availability will aid the development of therapeutic marijuana strains with tailored cannabinoid profiles and provide a basis for the breeding of hemp with improved agronomic characteristics.Peer reviewed: YesNRC publication: Ye
Energy transitions and uncertainty: creating low carbon investment opportunities in the UK electricity sector
This paper examines how actors in the UK electricity sector are attempting to deliver investment in low carbon generation. Low carbon technologies, because of their relative immaturity, capital intensity and low operational costs, do not readily fit with existing electricity markets and investment templates which were designed for fossil fuel based energy. We analyse key electricity market and infrastructure policies in the UK and highlight how these are aimed at making low carbon technologies âinvestableâ by reducing uncertainty, managing investment risks and repositioning actors within the electricity socio-technical âregimeâ. We argue that our study can inform contemporary debates on the politics and governance of sustainability transitions by empirically investigating the agency of incumbent regime actors in the face of uncertainty and by offering critical insights on the role of markets and finance in shaping socio-technical change
A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed
- âŚ