30 research outputs found

    Erratum to: Allergen immunotherapy for IgE-mediated food allergy: protocol for a systematic review

    Get PDF
    Unfortunately this article [1] was published with an error in the Funding section. The BM4SIT project is not acknowledged. This section should be corrected to the below: Funding EAACI and the BM4SIT project (Grant Number 601763) in the European Union’s Seventh Framework Programme FP7

    Allergen immunotherapy for IgE-mediated food allergy: protocol for a systematic review

    Get PDF
    Abstract Background The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for IgE-mediated food allergy. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT in IgE-mediated food allergy. Methods We will undertake a systematic review, which will involve searching international biomedical databases for published, in progress and unpublished evidence. Studies will be independently screened against pre-defined eligibility criteria and critically appraised using established instruments. Data will be descriptively and, if possible and appropriate, quantitatively synthesised. Discussion The findings from this review will be used to inform the development of recommendations for EAACI’s Guidelines on AIT

    Allergen immunotherapy for IgE-mediated food allergy : protocol for a systematic review

    Get PDF
    Erratum Clin Transl Allergy. 2017 Sep 15;7:31. doi: 10.1186/s13601-017-0166-7Background: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing the EAACI Guidelines for Allergen Immunotherapy (AIT) for IgE-mediated food allergy. We seek to critically assess the effectiveness, cost-effectiveness and safety of AIT in IgE-mediated food allergy. Methods: We will undertake a systematic review, which will involve searching international biomedical databases for published, in progress and unpublished evidence. Studies will be independently screened against pre-defined eligibility criteria and critically appraised using established instruments. Data will be descriptively and, if possible and appropriate, quantitatively synthesised. Discussion: The findings from this review will be used to inform the development of recommendations for EAACI's Guidelines on AIT.Peer reviewe

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2 and reports on five research projects.National Institutes of Health Contract 2 R01 DC00117National Institutes of Health Contract 1 R01 DC02032National Institutes of Health Contract 2 P01 DC00361National Institutes of Health Contract N01 DC22402National Institutes of Health Grant R01-DC001001National Institutes of Health Grant R01-DC00270National Institutes of Health Grant 5 R01 DC00126National Institutes of Health Grant R29-DC00625U.S. Navy - Office of Naval Research Grant N00014-88-K-0604U.S. Navy - Office of Naval Research Grant N00014-91-J-1454U.S. Navy - Office of Naval Research Grant N00014-92-J-1814U.S. Navy - Naval Air Warfare Center Training Systems Division Contract N61339-94-C-0087U.S. Navy - Naval Air Warfare Center Training System Division Contract N61339-93-C-0055U.S. Navy - Office of Naval Research Grant N00014-93-1-1198National Aeronautics and Space Administration/Ames Research Center Grant NCC 2-77

    Sensory Communication

    Get PDF
    Contains table of contents for Section 2, an introduction and reports on fifteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health Contract P01-DC00361National Institutes of Health Contract N01-DC22402National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant 2 R01 DC00126National Institutes of Health Grant 2 R01 DC00270National Institutes of Health Contract N01 DC-5-2107National Institutes of Health Grant 2 R01 DC00100U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-94-C-0087U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-93-1-1399U.S. Navy - Office of Naval Research/Naval Air Warfare Center Grant N00014-94-1-1079U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research Grant N00014-92-J-1814National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-88-K-0604National Aeronautics and Space Administration Grant NCC 2-771U.S. Air Force - Office of Scientific Research Grant F49620-94-1-0236U.S. Air Force - Office of Scientific Research Agreement with Brandeis Universit

    Pulmonary Eosinophilic Granuloma with Diabetes Insipidus

    No full text

    Images in Anesthesiology

    No full text

    Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon.

    No full text
    Zika virus (ZIKV) infection during pregnancy in humans is associated with an increased incidence of congenital anomalies including microcephaly as well as fetal death and miscarriage and collectively has been referred to as Congenital Zika Syndrome (CZS). Animal models for ZIKV infection in pregnancy have been developed including mice and non-human primates (NHPs). In macaques, fetal CZS outcomes from maternal ZIKV infection range from none to significant. In the present study we develop the olive baboon (Papio anubis), as a model for vertical transfer of ZIKV during pregnancy. Four mid-gestation, timed-pregnant baboons were inoculated with the French Polynesian ZIKV isolate (104 ffu). This study specifically focused on the acute phase of vertical transfer. Dams were terminated at 7 days post infection (dpi; n = 1), 14 dpi (n = 2) and 21 dpi (n = 1). All dams exhibited mild to moderate rash and conjunctivitis. Viremia peaked at 5-7 dpi with only one of three dams remaining mildly viremic at 14 dpi. An anti-ZIKV IgM response was observed by 14 dpi in all three dams studied to this stage, and two dams developed a neutralizing IgG response by either 14 dpi or 21 dpi, the latter included transfer of the IgG to the fetus (cord blood). A systemic inflammatory response (increased IL2, IL6, IL7, IL15, IL16) was observed in three of four dams. Vertical transfer of ZIKV to the placenta was observed in three pregnancies (n = 2 at 14 dpi and n = 1 at 21 dpi) and ZIKV was detected in fetal tissues in two pregnancies: one associated with fetal death at ~14 dpi, and the other in a viable fetus at 21 dpi. ZIKV RNA was detected in the fetal cerebral cortex and other tissues of both of these fetuses. In the fetus studied at 21 dpi with vertical transfer of virus to the CNS, the frontal cerebral cortex exhibited notable defects in radial glia, radial glial fibers, disorganized migration of immature neurons to the cortical layers, and signs of pathology in immature oligodendrocytes. In addition, indices of pronounced neuroinflammation were observed including astrogliosis, increased microglia and IL6 expression. Of interest, in one fetus examined at 14 dpi without detection of ZIKV RNA in brain and other fetal tissues, increased neuroinflammation (IL6 and microglia) was observed in the cortex. Although the placenta of the 14 dpi dam with fetal death showed considerable pathology, only minor pathology was noted in the other three placentas. ZIKV was detected immunohistochemically in two placentas (14 dpi) and one placenta at 21 dpi but not at 7 dpi. This is the first study to examine the early events of vertical transfer of ZIKV in a NHP infected at mid-gestation. The baboon thus represents an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs
    corecore