1,326 research outputs found

    Interpretation of Core Extrusion Measurements When Tunnelling Through Squeezing Ground

    Get PDF
    Squeezing intensity in tunnelling often varies over short distances, even where there is no change in the excavation method or lithology. Reliable predictions of the ground conditions ahead of the face are thus essential to avoid project setbacks. Such predictions would enable adjustments to be made during construction to the temporary support, to the excavation diameter and also to the final lining. The assessment of the behaviour of the core ahead of the face, as observed by means of extrusion measurements, provides some indications as to the mechanical characteristics of the ground. If the ground exhibits a moderate time-dependent behaviour and the effects of the support measures are taken into account, the prediction of convergence is feasible. If the ground behaviour is pronouncedly time-dependent, however, convergence predictions become very difficult, because core extrusion is governed by the short-term characteristics of the ground, which may be different from the long-term properties that govern final convergence. The case histories of the Gotthard Base Tunnel and of the Vasto tunnel show that there is a weak correlation between the axial extrusions and the convergences of the tunnel. By means of the case histories of the Tartaiguille tunnel and Raticosa tunnel, it is shown that to identify potentially weak zones on the basis of the extrusion measurements, careful processing of the monitoring data is essential: the analysis of the data has to take account of the effects of tunnel support and time, and has to eliminate errors caused by the monitoring proces

    Operational Planning of Active Distribution Grids under Uncertainty

    No full text
    Modern distribution system operators are facing constantly changing operating conditions caused by the increased penetration of intermittent renewable generators and other distributed energy resources. Under these conditions, the distribution system operators are required to operate their networks with increased uncertainty, while ensuring optimal, cost-effective, and secure operation. This paper proposes a centralized scheme for the operational planning of active distribution networks under uncertainty. A multi-period optimal power flow algorithm is used to compute optimal set-points of the controllable distributed energy resources located in the system and ensure its security. Computational tractability of the algorithm and feasibility of the resulting flows are ensured with the use of an iterative power flow method. The system uncertainty, caused by forecasting errors of renewables, is handled through the incorporation of chance constraints, which limit the probability of insecure operation. The resulting operational planning scheme is tested on a low-voltage distribution network model using real forecasting data for the renewable energy sources. We observe that the proposed method prevents insecure operation through efficient use of system controls

    Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite

    Get PDF
    Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be \emph{similar} to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM- and STM images differ substantially depending on distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter

    Minkowski Tensors of Anisotropic Spatial Structure

    Get PDF
    This article describes the theoretical foundation of and explicit algorithms for a novel approach to morphology and anisotropy analysis of complex spatial structure using tensor-valued Minkowski functionals, the so-called Minkowski tensors. Minkowski tensors are generalisations of the well-known scalar Minkowski functionals and are explicitly sensitive to anisotropic aspects of morphology, relevant for example for elastic moduli or permeability of microstructured materials. Here we derive explicit linear-time algorithms to compute these tensorial measures for three-dimensional shapes. These apply to representations of any object that can be represented by a triangulation of its bounding surface; their application is illustrated for the polyhedral Voronoi cellular complexes of jammed sphere configurations, and for triangulations of a biopolymer fibre network obtained by confocal microscopy. The article further bridges the substantial notational and conceptual gap between the different but equivalent approaches to scalar or tensorial Minkowski functionals in mathematics and in physics, hence making the mathematical measure theoretic method more readily accessible for future application in the physical sciences

    Second order analysis of geometric functionals of Boolean models

    Full text link
    This paper presents asymptotic covariance formulae and central limit theorems for geometric functionals, including volume, surface area, and all Minkowski functionals and translation invariant Minkowski tensors as prominent examples, of stationary Boolean models. Special focus is put on the anisotropic case. In the (anisotropic) example of aligned rectangles, we provide explicit analytic formulae and compare them with simulation results. We discuss which information about the grain distribution second moments add to the mean values.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jensen. (The second version mainly resolves minor LaTeX problems.

    Local Anisotropy of Fluids using Minkowski Tensors

    Full text link
    Statistics of the free volume available to individual particles have previously been studied for simple and complex fluids, granular matter, amorphous solids, and structural glasses. Minkowski tensors provide a set of shape measures that are based on strong mathematical theorems and easily computed for polygonal and polyhedral bodies such as free volume cells (Voronoi cells). They characterize the local structure beyond the two-point correlation function and are suitable to define indices 0≤βνa,b≤10\leq \beta_\nu^{a,b}\leq 1 of local anisotropy. Here, we analyze the statistics of Minkowski tensors for configurations of simple liquid models, including the ideal gas (Poisson point process), the hard disks and hard spheres ensemble, and the Lennard-Jones fluid. We show that Minkowski tensors provide a robust characterization of local anisotropy, which ranges from βνa,b≈0.3\beta_\nu^{a,b}\approx 0.3 for vapor phases to βνa,b→1\beta_\nu^{a,b}\to 1 for ordered solids. We find that for fluids, local anisotropy decreases monotonously with increasing free volume and randomness of particle positions. Furthermore, the local anisotropy indices βνa,b\beta_\nu^{a,b} are sensitive to structural transitions in these simple fluids, as has been previously shown in granular systems for the transition from loose to jammed bead packs

    Studies of the dose-effect relation

    Get PDF
    Dose-effect relations and, specifically, cell survival curves are surveyed with emphasis on the interplay of the random factors — biological variability, stochastic reaction of the cell, and the statistics of energy deposition —that co-determine their shape. The global parameters mean inactivation dose, , and coefficient of variance, V, represent this interplay better than conventional parameters. Mechanisms such as lesion interaction, misrepair, repair overload, or repair depletion have been invoked to explain sigmoid dose dependencies, but these notions are partly synonymous and are largely undistinguishable on the basis of observed dose dependencies. All dose dependencies reflect, to varying degree, the microdosimetric fluctuations of energy deposition, and these have certain implications, e.g. the linearity of the dose dependence at small doses, that apply regardless of unresolved molecular mechanisms of cellular radiation action

    Quantum dots and spin qubits in graphene

    Full text link
    This is a review on graphene quantum dots and their use as a host for spin qubits. We discuss the advantages but also the challenges to use graphene quantum dots for spin qubits as compared to the more standard materials like GaAs. We start with an overview of this young and fascinating field and will then discuss gate-tunable quantum dots in detail. We calculate the bound states for three different quantum dot architectures where a bulk gap allows for confinement via electrostatic fields: (i) graphene nanoribbons with armchair boundary, (ii) a disc in single-layer graphene, and (iii) a disc in bilayer graphene. In order for graphene quantum dots to be useful in the context of spin qubits, one needs to find reliable ways to break the valley-degeneracy. This is achieved here, either by a specific termination of graphene in (i) or in (ii) and (iii) by a magnetic field, without the need of a specific boundary. We further discuss how to manipulate spin in these quantum dots and explain the mechanism of spin decoherence and relaxation caused by spin-orbit interaction in combination with electron-phonon coupling, and by hyperfine interaction with the nuclear spin system.Comment: 23 pages, 10 figures, topical review prepared for Nanotechnolog
    • …
    corecore