1,780 research outputs found

    Operation characteristics of piezoelectric quartz tuning forks in high magnetic fields at liquid helium temperatures

    Full text link
    Piezoelectric quartz tuning forks are investigated in view of their use as force sensors in dynamic mode scanning probe microscopy at temperatures down to 1.5 K and in magnetic fields up to 8 T. The mechanical properties of the forks are extracted from the frequency dependent admittance and simultaneous interferometric measurements. The performance of the forks in a cryogenic environment is investigated. Force-distance studies performed with these sensors at low temperatures are presented

    Local spectroscopy and atomic imaging of tunneling current, forces and dissipation on graphite

    Get PDF
    Theory predicts that the currents in scanning tunneling microscopy (STM) and the attractive forces measured in atomic force microscopy (AFM) are directly related. Atomic images obtained in an attractive AFM mode should therefore be redundant because they should be \emph{similar} to STM. Here, we show that while the distance dependence of current and force is similar for graphite, constant-height AFM- and STM images differ substantially depending on distance and bias voltage. We perform spectroscopy of the tunneling current, the frequency shift and the damping signal at high-symmetry lattice sites of the graphite (0001) surface. The dissipation signal is about twice as sensitive to distance as the frequency shift, explained by the Prandtl-Tomlinson model of atomic friction.Comment: 4 pages, 4 figures, accepted at Physical Review Letter

    On the statistical evaluation of dose-response functions

    Get PDF
    The linear-quadratic dependence of effect on the dose of ionizing radiation and its biophysical implications are considered. The estimation of the parameters of the response function and the derivation of the joint confidence region of the estimates are described. The method is applied to the induction of pink mutations inTradescantia which follows the linear-quadratic model. The statistical procedure is also suitable for other response functions

    On the concepts of radial and angular kinetic energies

    Get PDF
    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wavefunction picture and the Weyl-Wigner phase-space picture. Thus, the radial and angular kinetic energies are different quantities in the two pictures, containing different physical information, but the relation between them is well defined. We discuss this relation and illustrate its nature by examples referring to a free particle and to a ground-state hydrogen atom.Comment: 10 pages, 2 figures, accepted by Phys. Rev.

    Site-specific force-distance characteristics on NaCl(001): Measurements versus atomistic simulations

    Get PDF
    A scanning force microscope was used to measure the frequency shift above various atomic sites on a NaCl(001) surface at 7K. The data was converted to force and compared to the results of atomistic simulations using model NaCl and MgO tips. We find that the NaCl tip demonstrates better agreement in the magnitude of the forces in experiments, supporting the observation that the tip first came into contact with the sample. Using the MgO tip as a model of the originally oxidized silicon tip, we further demonstrate a possible mechanism for tip contamination at low temperatures.Peer reviewe

    Studies of the dose-effect relation

    Get PDF
    Dose-effect relations and, specifically, cell survival curves are surveyed with emphasis on the interplay of the random factors — biological variability, stochastic reaction of the cell, and the statistics of energy deposition —that co-determine their shape. The global parameters mean inactivation dose, , and coefficient of variance, V, represent this interplay better than conventional parameters. Mechanisms such as lesion interaction, misrepair, repair overload, or repair depletion have been invoked to explain sigmoid dose dependencies, but these notions are partly synonymous and are largely undistinguishable on the basis of observed dose dependencies. All dose dependencies reflect, to varying degree, the microdosimetric fluctuations of energy deposition, and these have certain implications, e.g. the linearity of the dose dependence at small doses, that apply regardless of unresolved molecular mechanisms of cellular radiation action

    Bimodal magnetic force microscopy with capacitive tip-sample distance control

    Get PDF
    A single-passage, bimodal magnetic force microscopy technique optimized for scanning samples with arbitrary topography is discussed. A double phase-locked loop (PLL) system is used to mechanically excite a high quality factor cantilever under vacuum conditions on its first mode and via an oscillatory tip-sample potential on its second mode. The obtained second mode oscillation amplitude is then used as a proxy for the tip-sample distance, and for the control thereof. With appropriate z-feedback parameters two data sets reflecting the magnetic tip-sample interaction and the sample topography are simultaneously obtained

    Distance dependence of force and dissipation in non-contact atomic force microscopy on Cu(100) and Al(111)

    Full text link
    The dynamic characteristics of a tip oscillating in the nc-AFM mode in close vicinity to a Cu(100)-surface are investigated by means of phase variation experiments in the constant amplitude mode. The change of the quality factor upon approaching the surface deduced from both frequency shift and excitation versus phase curves yield to consistent values. The optimum phase is found to be independent of distance. The dependence of the quality factor on distance is related to 'true' damping, because artefacts related to phase misadjustment can be excluded. The experimental results, as well as on-resonance measurements at different bias voltages on an Al(111) surface, are compared to Joule dissipation and to a model of dissipation in which long-range forces lead to viscoelastic deformations

    Classical double-layer atoms: artificial molecules

    Full text link
    The groundstate configuration and the eigenmodes of two parallel two-dimensional classical atoms are obtained as function of the inter-atomic distance (d). The classical particles are confined by identical harmonic wells and repel each other through a Coulomb potential. As function of d we find several structural transitions which are of first or second order. For first (second) order transitions the first (second) derivative of the energy with respect to d is discontinuous, the radial position of the particles changes discontinuously (continuously) and the frequency of the eigenmodes exhibit a jump (one mode becomes soft, i.e. its frequency becomes zero).Comment: 4 pages, RevTex, 5 ps figures, to appear in Phys.Rev.Let
    • …
    corecore