233 research outputs found

    ARPES on HTSC: simplicity vs. complexity

    Full text link
    A notable role in understanding of microscopic electronic properties of high temperature superconductors (HTSC) belongs to angle resolved photoemission spectroscopy (ARPES). This technique supplies a direct window into reciprocal space of solids: the momentum-energy space where quasiparticles (the electrons dressed in clouds of interactions) dwell. Any interaction in the electronic system, e.g. superconducting pairing, leads to modification of the quasi-particle spectrum--to redistribution of the spectral weight over the momentum-energy space probed by ARPES. A continued development of the technique had an effect that the picture seen through the ARPES window became clearer and sharper until the complexity of the electronic band structure of the cuprates had been resolved. Now, in an optimal for superconductivity doping range, the cuprates much resemble a normal metal with well predicted electronic structure, though with rather strong electron-electron interaction. This principal disentanglement of the complex physics from complex structure reduced the mystery of HTSC to a tangible problem of interaction responsible for quasi-particle formation. Here we present a short overview of resent ARPES results, which, we believe, denote a way to resolve the HTSC puzzle.Comment: A review written for a special issue of FN

    Momentum dependence of the energy gap in the superconducting state of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu)

    Full text link
    The energy gap of optimally doped Bi2(Sr,R)2CuOy (R=La and Eu) was probed by angle resolved photoemission spectroscopy (ARPES) using a vacuum ultraviolet laser (photon energy 6.994 eV) or He I resonance line (21.218 eV) as photon source. The results show that the gap around the node at sufficiently low temperatures can be well described by a monotonic d-wave gap function for both samples and the gap of the R=La sample is larger reflecting the higher Tc. However, an abrupt deviation from the d-wave gap function and an opposite R dependence for the gap size were observed around the antinode, which represent a clear disentanglement between the antinodal pseudogap and the nodal superconducting gap.Comment: Submitted as the proceedings of LT2

    Effect of Reducing Atmosphere on the Magnetism of Zn1-xCoxO Nanoparticles

    Full text link
    We report the crystal structure and magnetic properties of Zn1-xCoxO nanoparticles synthesized by heating metal acetates in organic solvent. The nanoparticles were crystallized in wurtzite ZnO structure after annealing in air and in a forming gas (Ar95%+H5%). The X-ray diffraction and X-ray photoemission spectroscopy (XPS) data for different Co content show clear evidence for the Co+2 ions in tetrahedral symmetry, indicating the substitution of Co+2 in ZnO lattice. However samples with x=0.08 and higher cobalt content also indicate the presence of Co metal clusters. Only those samples annealed in the reducing atmosphere of the forming gas, and that showed the presence of oxygen vacancies, exhibited ferromagnetism at room temperature. The air annealed samples remained non-magnetic down to 77K. The essential ingredient in achieving room temperature ferromagnetism in these Zn1-xCoxO nanoparticles was found to be the presence of additional carriers generated by the presence of the oxygen vacancies.Comment: 11 pages, 6 figures, submitted to Nanotechnology IO

    Characteristics of alpha projectile fragments emission in interaction of nuclei with emulsion

    Full text link
    The properties of the relativistic alpha fragments produced in interactions of 84^Kr at around 1 A GeV in nuclear emulsion are investigated. The experimental results are compared with the similar results obtained from various projectiles with emulsion interactions at different energies. The total, partial nuclear cross-sections and production rates of alpha fragmentation channels in relativistic nucleus-nucleus collisions and their dependence on the mass number and initial energy of the incident projectile nucleus are investigated. The yields of multiple alpha fragments emitted from the interactions of projectile nuclei with the nuclei of light, medium and heavy target groups of emulsion-detector are discussed and they indicate that the projectile-breakup mechanism seems to be free from the target mass number. It is found that the multiplicity distributions of alpha fragments are well described by the Koba-Nielsen-Olesen (KNO) scaling presentation. The mean multiplicities of the freshly produced newly created charged secondary particles, normally known as shower and secondary particles associated with target in the events where the emission of alpha fragments were accompanied by heavy projectile fragments having Z value larger than 4 seem to be constant as the alpha fragments multiplicity increases, and exhibit a behavior independent of the alpha fragments multiplicity.Comment: 33 pages, 8 figures and 3 tables (in press

    Cold nuclear matter effects on J/psi production: intrinsic and extrinsic transverse momentum effects

    Full text link
    Cold nuclear matter effects on J/psi production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/psi production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c-cbar pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R_AA in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.Comment: 7 pages, 11 figures, LaTeX, uses elsarticle.cls (included).v2: version (with minor text revisions and Fig 2 and 4a modified) to appear in Phys.Lett.

    Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers

    Full text link
    The multigap superconductivity modulated by quantum confinement effects in a superlattice of quantum wells is presented. Our theoretical BCS approach captures the low-energy physics of a shape resonance in the superconducting gaps when the chemical potential is tuned near a Lifshitz transition. We focus on the case of weak Cooper-pairing coupling channels and strong pair exchange interaction driven by repulsive Coulomb interaction that allows to use the BCS theory in the weak-coupling regime neglecting retardation effects like in quantum condensates of ultracold gases. The calculated matrix element effects in the pairing interaction are shown to yield a complex physics near the particular quantum critical points due to Lifshitz transitions in multigap superconductivity. Strong deviations of the ratio 2Δ/Tc2\Delta/T_c from the standard BCS value as a function of the position of the chemical potential relative to the Lifshitz transition point measured by the Lifshitz parameter are found. The response of the condensate phase to the tuning of the Lifshitz parameter is compared with the response of ultracold gases in the BCS-BEC crossover tuned by an external magnetic field. The results provide the description of the condensates in this regime where matrix element effects play a key role.Comment: 12 pages, 6 figure

    Anisotropic J/ΨJ/\Psi suppression in nuclear collisions

    Full text link
    The nuclear overlap zone in non-central relativistic heavy ion collisions is azimuthally very asymmetric. By varying the angle between the axes of deformation and the transverse direction of the pair momenta, the suppression of J/ΨJ/\Psi and Ψ′\Psi' will oscillate in a characteristic way. Whereas the average suppression is mostly sensitive to the early and high density stages of the collision, the amplitude is more sensitive to the late stages. This effect provides additional information on the J/ΨJ/\Psi suppression mechanisms such as direct absorption on participating nucleons, comover absorption or formation of a quark-gluon plasma. The behavior of the average J/ΨJ/\Psi suppression and its amplitude with centrality of the collisions is discussed for SPS, RHIC and LHC energies with and without a phase transition.Comment: Revised and extended version, new figure

    Extraction of the Electron Self-Energy from Angle Resolved Photoemission Data: Application to Bi2212

    Full text link
    The self-energy Σ(k,ω)\Sigma({\bf k},\omega), the fundamental function which describes the effects of many-body interactions on an electron in a solid, is usually difficult to obtain directly from experimental data. In this paper, we show that by making certain reasonable assumptions, the self-energy can be directly determined from angle resolved photoemission data. We demonstrate this method on data for the high temperature superconductor Bi2Sr2CaCu2O8+xBi_2Sr_2CaCu_2O_{8+x} (Bi2212) in the normal, superconducting, and pseudogap phases.Comment: expanded version (6 pages), to be published, Phys Rev B (1 Sept 99

    ARPES study of Pb doped Bi_2Sr_2CaCu_2O_8 - a new Fermi surface picture

    Full text link
    High resolution angle resolved photoemission data from Pb doped Bi_2Sr_2CaCu_2O_8 (Bi2212) with suppressed superstructure is presented. Improved resolution and very high momentum space sampling at various photon energies reveal the presence of two Fermi surface pieces. One has the hole-like topology, while the other one has its van Hove singularity very close to (pi,0), its topology at some photon energies resembles the electron-like piece. This result provides a unifying picture of the Fermi surface in the Bi2212 compound and reconciles the conflicting reports.Comment: 4 pages, 4 figure

    Pseudo-surface acoustic waves in hypersonic surface phononic crystals

    Get PDF
    We present a theoretical framework allowing to properly address the nature of surfacelike eigenmodes in a hypersonic surface phononic crystal, a composite structure made of periodic metal stripes of nanometer size and periodicity of 1 um, deposited over a semi-infinite silicon substrate. In surface-based phononic crystals there is no distinction between the eigenmodes of the periodically nanostructured overlayer and the surface acoustic modes of the semi-infinite substrate, the solution of the elastic equation being a pseudosurface acoustic wave partially localized on the nanostructures and radiating energy into the bulk. This problem is particularly severe in the hypersonic frequency range, where semi-infinite substrate s surface acoustic modes strongly couple to the periodic overlayer, thus preventing any perturbative approach. We solve the problem introducing a surface-likeness coefficient as a tool allowing to find pseudosurface acoustic waves and to calculate their line shapes. Having accessed the pseudosurface modes of the composite structure, the same theoretical frame allows reporting on the gap opening in the now well-defined pseudo-SAW frequency spectrum. We show how the filling fraction, mass loading, and geometric factors affect both the frequency gap, and how the mechanical energy is scattered out of the surface waveguiding modes
    • …
    corecore