6 research outputs found

    Reproducibility of microarray data: a further analysis of microarray quality control (MAQC) data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many researchers are concerned with the comparability and reliability of microarray gene expression data. Recent completion of the MicroArray Quality Control (MAQC) project provides a unique opportunity to assess reproducibility across multiple sites and the comparability across multiple platforms. The MAQC analysis presented for the conclusion of inter- and intra-platform comparability/reproducibility of microarray gene expression measurements is inadequate. We evaluate the reproducibility/comparability of the MAQC data for 12901 common genes in four titration samples generated from five high-density one-color microarray platforms and the TaqMan technology. We discuss some of the problems with the use of correlation coefficient as metric to evaluate the inter- and intra-platform reproducibility and the percent of overlapping genes (POG) as a measure for evaluation of a gene selection procedure by MAQC.</p> <p>Results</p> <p>A total of 293 arrays were used in the intra- and inter-platform analysis. A hierarchical cluster analysis shows distinct differences in the measured intensities among the five platforms. A number of genes show a small fold-change in one platform and a large fold-change in another platform, even though the correlations between platforms are high. An analysis of variance shows thirty percent of gene expressions of the samples show inconsistent patterns across the five platforms. We illustrated that POG does not reflect the accuracy of a selected gene list. A non-overlapping gene can be truly differentially expressed with a stringent cut, and an overlapping gene can be non-differentially expressed with non-stringent cutoff. In addition, POG is an unusable selection criterion. POG can increase or decrease irregularly as cutoff changes; there is no criterion to determine a cutoff so that POG is optimized.</p> <p>Conclusion</p> <p>Using various statistical methods we demonstrate that there are differences in the intensities measured by different platforms and different sites within platform. Within each platform, the patterns of expression are generally consistent, but there is site-by-site variability. Evaluation of data analysis methods for use in regulatory decision should take no treatment effect into consideration, when there is no treatment effect, "a fold-change cutoff with a non-stringent p-value cutoff" could result in 100% false positive error selection.</p

    Additional file 1 of Gene set analysis using sufficient dimension reduction

    No full text
    The effect of slice numbers on SDR method. (PDF 126 kb

    Power and sample size estimation in microarray studies

    No full text
    Abstract Background Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (Ï€1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes. Results A sample size estimate based on the common formulation, to achieve the desired sensitivity on average, can be calculated using a univariate method without taking the correlation among genes into consideration. This formulation of sample size problem is inadequate because the probability of detecting the specified sensitivity can be lower than 50%. On the other hand, the needed sample size calculated by the proposed permutation method will ensure detecting at least the desired sensitivity with 95% probability. The method is shown to perform well for a real example dataset using a small pilot dataset with 4-6 samples per group. Conclusions We recommend that the sample size problem should be formulated to detect a specified proportion of differentially expressed genes with 95% probability. This formulation ensures finding the desired proportion of true positives with high probability. The proposed permutation method takes the correlation structure and effect size heterogeneity into consideration and works well using only a small pilot dataset.</p
    corecore