281 research outputs found

    Slow dynamics at the smeared phase transition of randomly layered magnets

    Get PDF
    We investigate a model for randomly layered magnets, viz. a three-dimensional Ising model with planar defects. The magnetic phase transition in this system is smeared because static long-range order can develop on isolated rare spatial regions. Here, we report large-scale kinetic Monte Carlo simulations of the dynamical behavior close to the smeared phase transition which we characterize by the spin (time) autocorrelation function. In the paramagnetic phase, its behavior is dominated by Griffiths effects similar to those in magnets with point defects. In the tail region of the smeared transition the dynamics is even slower: the autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small asymptotic value following a power law at late times. Our Monte-Carlo results are in good agreement with recent theoretical predictions based on optimal fluctuation theory.Comment: 7 pages, 6 eps figures, final version as publishe

    Paper Session I-A - Space Shuttle to Reusable Launch Vehicle

    Get PDF
    The National Space Transportation Policy establishes national policy, guidelines, and implementing actions for the conduct of National space transportation programs that will sustain and revitalize U.S. space transportation capabilities... . The direction to the National Aeronautics and Space Administration (NASA) is to provide for the improvement of the Space Shuttle system focusing on reliability, safety, and cost effectiveness. as well as be the lead agency for technology development and demonstration for next generation reusable space transportation systems, such as the single-stage-to-orbit concept. With this vision, NASA has initiated Cooperative Agreement Notices between NASA and the private sector for X-33 (Reusable Launch Vehicle-Advanced Technology Demonstrator) and X-34 (Reusable Launch Vehicle-Small Reusable Booster) which would provide insight to a decision by December 1996 to proceed with sub-scale flight demonstration to prove the single-stage-to-orbit (SSTO) concept. This paper deals with operational issues which must be dealt with in order to achieve SSTO goals of reliable low cost space transportation and order of magnitude reductions in operating costs

    Quantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude

    Get PDF
    BACKGROUND: In addition to studies of plant gene function and developmental analyses, plant biotechnological use is largely dependent upon transgenic technologies. The moss Physcomitrella patens has become an exciting model system for studying plant molecular processes due to an exceptionally high rate of nuclear gene targeting by homologous recombination compared with other plants. However, its use in transgenic approaches requires expression vectors that incorporate sufficiently strong promoters. To satisfy this requirement, a set of plant expression vectors was constructed and equipped with either heterologous or endogenous promoters. RESULTS: Promoter activity was quantified using the dual-luciferase reporter assay system. The eight different heterologous promoter constructs tested exhibited expression levels spanning three orders of magnitude. Of these, the complete rice actin1 gene promoter showed the highest activity in Physcomitrella, followed by a truncated version of this promoter and three different versions of the cauliflower mosaic virus 35S promoter. In contrast, the Agrobacterium tumefaciens nopaline synthase promoter induced transcription rather weakly. Constructs including promoters commonly used in mammalian expression systems also proved to be functional in Physcomitrella. In addition, the 5' -regions of two Physcomitrella glycosyltransferases (i.e. α1,3-fucosyltransferase and β1,2-xylosyltransferase) were identified and functionally characterised in comparison to the heterologous promoters. Furthermore, motifs responsible for enhancement of translation efficiency – such as the TMV omega element and a modified sequence directly prior the start codon – were tested in this model. CONCLUSION: We developed a vector set that enables gene expression studies, both in lower and higher land plants, thus providing valuable tools applicable in both basic and applied molecular research

    Genome Sequence of \u3ci\u3eStreptomyces aureofaciens\u3c/i\u3e ATCC Strain 10762

    Get PDF
    Streptomyces aureofaciens is a Gram-positive actinomycete that produces the antibiotics tetracycline and chlortetracycline. Here, we report the assembly and initial annotation of the draft genome sequence of S. aureofaciens ATCC strain 10762

    Genome Sequence of \u3ci\u3eStreptomyces aureofaciens\u3c/i\u3e ATCC Strain 10762

    Get PDF
    Streptomyces aureofaciens is a Gram-positive actinomycete that produces the antibiotics tetracycline and chlortetracycline. Here, we report the assembly and initial annotation of the draft genome sequence of S. aureofaciens ATCC strain 10762

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention

    A Systems Biology-Based Classifier for Hepatocellular Carcinoma Diagnosis

    Get PDF
    AIM: The diagnosis of hepatocellular carcinoma (HCC) in the early stage is crucial to the application of curative treatments which are the only hope for increasing the life expectancy of patients. Recently, several large-scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with HCC progression. However, those marker sets shared few genes in common and were poorly validated using independent data. Therefore, we developed a systems biology based classifier by combining the differential gene expression with topological features of human protein interaction networks to enhance the ability of HCC diagnosis. METHODS AND RESULTS: In the Oncomine platform, genes differentially expressed in HCC tissues relative to their corresponding normal tissues were filtered by a corrected Q value cut-off and Concept filters. The identified genes that are common to different microarray datasets were chosen as the candidate markers. Then, their networks were analyzed by GeneGO Meta-Core software and the hub genes were chosen. After that, an HCC diagnostic classifier was constructed by Partial Least Squares modeling based on the microarray gene expression data of the hub genes. Validations of diagnostic performance showed that this classifier had high predictive accuracy (85.88∼92.71%) and area under ROC curve (approximating 1.0), and that the network topological features integrated into this classifier contribute greatly to improving the predictive performance. Furthermore, it has been demonstrated that this modeling strategy is not only applicable to HCC, but also to other cancers. CONCLUSION: Our analysis suggests that the systems biology-based classifier that combines the differential gene expression and topological features of human protein interaction network may enhance the diagnostic performance of HCC classifier

    Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action.</p> <p>Methods</p> <p>In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines.</p> <p>Results</p> <p>Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling.</p> <p>Conclusions</p> <p>These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment.</p
    corecore