12 research outputs found

    Computational assessment of non-axisymmetric separate-jet exhausts on test rig configurations

    Get PDF
    The next generation of civil turbofan engines are likely to have increased bypass ratios and lower fan pressure ratios to improve propulsive efficiency and to reduce specific fuel consumption. However, the larger size of these engines may result in increased overall aircraft drag partially that could offset the fuel consumption benefits. Non-axisymmetric exhaust configurations can contribute to the mitigation of these effects through an improved alignment of the thrust vector relative to the drag axis. However, there is a lack of knowledge on how to experimentally test non-axisymmetric exhaust designs. To address this, the study develops a non-axisymmetric configuration of the Dual Stream-Flow Reference Nozzle (DSFRN) and assesses it with computational fluid dynamics in various configurations and conditions. The objective is to establish a baseline approach for testing non-axisymmetric exhausts. Overall, it is recommended to test non-axisymmetric exhausts with the ambient wind-on effects included and to evaluate the three-dimensional exhaust characteristics using thrust vector angles, in addition to overall velocity and discharge coefficients. Moreover, the interaction between a swept wing and the non-axisymmetric exhaust was found not to have a notable impact on the exhaust characteristics.Innovate UK and Rolls-Royce plc

    Design considerations of non-axisymmetric exhausts for large civil aero-engines

    Get PDF
    In order to reduce fuel consumption, the next generation of aero-engines are expected to operate with higher bypass ratios and lower fan pressure ratios. This will improve the propulsive efficiency of the power plant and reduce specific fuel consumption. Higher bypass ratios will be mostly accommodated with larger fan diameters. However, this will increase the size and mass of the powerplant, which could penalise the overall aircraft drag and erode some of the aero-engine cycle benefits. In addition, future configurations may require more close-coupled installations with the airframe due to structural and ground clearance requirements. This tendency may further exacerbate the adverse aerodynamic installation effects. A better integration of UHBR aero-engines with the airframe could be achieved with non-axisymmetric separate-jet exhausts. Non-axisymmetric configurations of the bypass nozzle can improve the performance of the aircraft by mitigating some of the penalising aerodynamic effects induced by the installation of the power plant. In this context, three-dimensional configurations of exhaust systems are parametrised and integrated with the propulsion system through a refined control of the geometry. The power plant is installed on the NASA Common Research Model and assessed with CFD. The design of non-axisymmetric exhausts is embedded in a relatively low-cost optimisation process. The method is based on response surface models and targets the optimisation of the aircraft net vehicle force for different design concepts of non-axisymmetric exhaust systems and several installation configuration. It is concluded that the optimisation of installed non-axisymmetric exhausts can benefit the overall aircraft net vehicle force between 0.5-0.9% of the engine nominal thrust, depending on the installation position.Rolls-Royce pl

    Impact of installation on the performance of an aero-engine exhaust at wind-milling flow conditions

    Get PDF
    This paper presents a numerical investigation of the effect of wing integration on the aerodynamic behavior of a typical large civil aero-engine exhaust system at wind-milling flow conditions. The work is based on the dual stream jet propulsion (DSJP) test rig, as will be tested within the transonic wind tunnel (TWT) located at the aircraft research association (ARA) in the UK. The DSJP rig was designed to measure the impact of the installed pressure field due to the effect of the wing on the aerodynamic performance of separate-jet exhausts. The rig is equipped with the dual separate flow reference nozzle (DSFRN), installed under a swept wing. Computational fluid dynamic simulations were carried out for representative ranges of fan and core nozzle pressure ratios (CNPR) for “engine-out” wind-milling scenarios at end of runway (EOR) takeoff, diversion, and cruise conditions. Analyses were done for both isolated and installed configurations to quantify the impact of the installed pressure field on the fan and core nozzle discharge coefficients. The impact of fan and core nozzle pressure ratios, as well as freestream Mach number and high-lift surfaces on the installed suppression effect, was also evaluated. It is shown that the installed pressure field can reduce the fan nozzle discharge coefficient by up to 16%, relative to the isolated configuration for EOR wind-milling conditions. The results were used to inform the design and setup of the experimental activity which is planned for 2023

    Multi-fidelity assessment of exhaust systems for complete engine-airframe integrations

    Get PDF
    For podded underwing configurations, the goal of specific fuel consumption reduction has led to engine designs with larger fan diameters and higher bypass ratios to increase propulsive efficiency. As a consequence of this trend, the aerodynamic interference with the airframe is increased. Non-axisymmetric exhaust geometries could minimise such interference for coupled configurations. Class Shape Transformation functions are used to define 3D podded engine geometries that are installed on a transonic aircraft configuration. The complete system is assessed at mid-cruise conditions of a representative long-range cruise operation. The assessment is conducted by multi-fidelity computational fluid dynamics computations that are Euler inviscid and Reynolds Averaged Navier Stokes turbulent methods. The correlation between the different fidelities is analysed and a multi-fidelity co-kriging model is developed. The model is applied to predict the behaviour of installed non-axisymmetric exhaust systems and results into a 33% computational benefit compared to single-fidelity surrogates

    Optimization of installed compact and robust nacelles using surrogate models

    Get PDF
    The design and optimization of aero-engine nacelles in a configuration installed on the airframe may be an important consideration to realize the cycle benefits of new ultra-high bypass ratio aero-engines. However, this is typically a high-dimensional design problem and there is a need to reduce the associated computational costs. This work presents a method for aerodynamic nacelle optimization for an installed configuration and provides further knowledge about the characteristics of this design space. The methodology includes single fidelity surrogate models built with inviscid flow solutions. Gaussian process regression and artificial neural networks are tested as modelling techniques. Viscous computations are used to assess the optimized designs at cruise and off-design windmilling diversion condition. This approach yielded an optimal design with a reduction in fuel burn of about 0.56% relative to a design optimized in isolated configuration without considering the powerplant integration effects. The optimal design also met the robustness criteria in terms of limited flow separation at the windmilling diversion conditions

    Design optimisation of separate-jet exhausts with CFD in-the-loop and dimensionality reduction techniques

    Get PDF
    For Ultra-High Bypass Ratio aero-engines, the exhaust system is likely to play a significant role on the aerodynamics and performance of the aircraft. For this reason, relatively rapid methods for the aerodynamic design and optimisation of exhaust systems are required to inform design decisions at early stages of the design process. Previous exhaust optimisation works encompassed Response Surface Model (RSM) based optimisations of nozzle configurations that were parametrised with a significant number of design variables. The RSM were constructed with a large database of designs that were assessed with fine computational meshes and well resolved boundary layers. However, the large number of design variables and the computational cost required to evaluate each exhaust design limited the optimisation capabilities. This work develops a relatively more rapid exhaust optimisation method based on CFD in-the-loop and dimensionality reduction. The methodology is based on coarse meshes and wall functions to guide the optimisation process and is coupled with methods for the identification of the dominant design variables. For an UHBR aero-engine exhaust design space of 16 design variables, it was found that the velocity coefficient could be characterised with only seven parameters. Based on these results, various optimisation methods were developed and applied. These targeted the maximisation of the velocity coefficient by optimising just the 7 dominant design variables. With these approaches, a similar benefit in exhaust performance relative to the baseline optimisation method was obtained approximately 4 times faster

    Civil turbofan propulsion aerodynamics: Thrust-Drag accounting and impact of engine installation position

    Get PDF
    It is envisaged that the next generation of civil aero-engines will employ high bypass ratios to lower specific thrust and improve propulsive efficiency. This trend is likely to be accompanied with the integration of compact nacelle and exhausts in podded under-wing installation positions that are close coupled to the airframe. This leads to the requirement for a comprehensive methodology able to predict aerodynamic performance for combined airframe-engine architectures. This paper presents a novel thrust and drag accounting approach for the aerodynamic analysis of integrated airframe-engine systems. An integral metric is synthesised based on the concept of net vehicle force. This is accomplished through the consolidation of aerodynamic coefficients, combined with the engine cycle characteristics obtained from a thermodynamic matching model. The developed approach is coupled with an in-house tool for the aerodynamic design and analysis of installed aero-engines. This framework is deployed to quantify the impact of engine installation position on the aerodynamic performance of a future large turbofan installed on a commercial wide-body airframe. The governing flow mechanisms are identified and their influence is decomposed in terms of the impact on airframe, nacelle, and exhaust performance. It is shown that it is essential to include the impact of installation on the exhaust for the correct determination of overall airframe-engine performance. The difference in net vehicle force for a close coupled position can reach up to -0.70% of nominal standard net thrust relative to a representative baseline engine location

    Design optimisation of non-axisymmetric exhausts for installed civil aero-engines

    Get PDF
    Future civil aero-engines are likely to operate with higher bypass-ratios (BPR) than current power-plants to improve propulsive efficiency and reduce specific thrust. This will probably be accompanied by an increase of fan diameter and size of the power plant. Consequently, future configurations are likely to require more close-coupled installations with the airframe due to structural and ground clearance requirements. This tendency may lead to an increase in the adverse installation effects which could be mitigated with non-axisymmetric exhausts. However, due to the prohibitive computational cost, limited regions of the design space have been studied. For this reason, a relatively low-cost design approach for the integrated system is required. The aim of this work is to establish a method to map the non-axisymmetric exhaust design space where the effects of the propulsion system installation are taken into account. The methodology relies on the generation of a design database using inviscid computational fluid dynamics (CFD) methods. This is used to characterise the design space, identify the dominant design parameters and build response surface models for optimisation. The candidate designs that arise from the optimisation are assessed with viscous CFD simulations to assess the aerodynamic mechanisms and performance characteristics. The result is a set of design recommendations for installed configurations with non-axisymmetric exhausts. The method is an enabler for the optimisation of installed propulsion systems and has provided an exhaust design with a 0.7% improvement on net vehicle force relative to an axisymmetric exhaust, for a close coupled configuration where the fan cowl is overlapped with the wing. A reduction in net vehicle force is expected to lead to a similar reduction in cruise fuel burn.Rolls Royce plc. Cranfield Universit

    Deep-learning for flow-field prediction of 3D non-axisymmetric aero-engine nacelles

    Get PDF
    Computational fluid dynamics (CFD) methods have been widely used for the design and optimisation of complex non-linear systems. Within this context, the overall process can typically have a large computational overhead. For preliminary design studies, it is important to establish design capabilities that meet the usually conflicting requirements of rapid evaluations and accuracy. Of particular interest is the aerodynamic design of components or subsystems within the transonic range. This can pose notable challenges due to the non-linearity of this flow regime. There is a need to develop low order models for future civil aero-engine nacelle applications. The aerodynamics of compact nacelles can be sensitive to changes in geometry and operating conditions. For example, within the cruise segment different flow-field characteristics may be encountered such as shock-wave boundary layer interaction or shock induced separation. As such, an important step in the successful design of these new architectures is to develop methods for fast and accurate flow-field prediction. This work studies two different metamodelling approaches for flow-field prediction of 3D non-axisymmetric nacelles. Firstly, a reduced order model based on an artificial neural network (ANN) is considered. Secondly, a low order model that combines singular value decomposition and an artificial neural network (SVD+ANN) is investigated. Across a wide geometric design space, the ANN and SVD+ANN methods have an overall uncertainty in the isentropic Mach number prediction of about 0.02. However, the ANN approach has better capabilities to predict pre-shock Mach numbers and shock-wave locations.European Union funding: 10100759

    Aerodynamic optimisation of civil aero-engine nacelles by dimensionality reduction and multi-fidelity techniques

    Get PDF
    Purpose - Aerodynamic shape optimisation is complex due to the high dimensionality of the problem, the associated non-linearity and its large computational cost. These three aspects have an impact on the overall time of the design process. To overcome these challenges, this paper develops a method for transonic aerodynamic design with dimensionality reduction and multi-fidelity techniques. Design/methodology/approach - The developed methodology is used for the optimisation of an installed civil ultra-high bypass ratio aero-engine nacelle. As such, the effects of airframe-engine integration are considered during the optimisation routine. The active subspace method is applied to reduce the dimensionality of the problem from 32 to 2 design variables with a database compiled with Euler CFD calculations. In the reduced dimensional space, a co-Kriging model is built to combine Euler lower-fidelity and RANS higher-fidelity CFD evaluations. Findings - Relative to a baseline aero-engine nacelle derived from an isolated optimisation process, the proposed method yielded a non-axisymmetric nacelle configuration with an increment in net vehicle force of 0.65% of the nominal standard net thrust. Originality - This work investigates the viability of CFD optimisation through a combination of dimensionality reduction and multi-fidelity method, and demonstrates that the developed methodology enables the optimisation of complex aerodynamic problems.European Union funding: 82099
    corecore