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ABSTRACT: 

For podded underwing configurations, the goal of 
specific fuel consumption reduction has led to 
engine designs with larger fan diameters and higher 
bypass ratios to increase propulsive efficiency. As a 
consequence of this trend, the aerodynamic 
interference with the airframe is increased. Non-
axisymmetric exhaust geometries could minimise 
such interference for coupled configurations. Class 
Shape Transformation functions are used to define 
3D podded engine geometries that are installed on 
a transonic aircraft configuration. The complete 
system is assessed at mid-cruise conditions of a 
representative long-range cruise operation. The 
assessment is conducted by multi-fidelity 
computational fluid dynamics computations that are 
Euler inviscid and Reynolds Averaged Navier 
Stokes turbulent methods. The correlation between 
the different fidelities is analysed and a multi-fidelity 
co-kriging model is developed. The model is applied 
to predict the behaviour of installed non-
axisymmetric exhaust systems and results into a 
33% computational benefit compared to single-
fidelity surrogates. 

 

1. INTRODUCTION 

For civil aviation, the goal of Specific Fuel 
Consumption (SFC) reduction and propulsive 
efficiency increase has led to podded underwing 
engine designs with larger fan diameters and higher 
bypass ratios. This increases the importance of the 
propulsion integration aspects for both the engine 
and airframe. In this coupled problem, the 
installation effects could affect the installed 
propulsion system performance with a change in the 
Net Vehicle Force (NVF) and an alteration of the 
engine operating point.  
 
Within this context, initial assessments of the 
installed power plant performance showed good 

agreement with experimental data using a through-
flow nacelle model [1]. Installation effects are 
demonstrated to be sensitive to the engine size, 
which becomes significant for larger-diameter 
engines, and position under the wing. Analyses of 
different installation positions at cruise conditions 
demonstrated a net vehicle force (NVF) variation of 
1.7% of standard net thrust (𝐹𝑁𝑂𝑀) [2] across the 
installations considered. 
 
Geometry parametrization enables the definition of 
geometries for the intakes, nacelles and exhausts 
using a reduced number of variables. One flexible 
method for parametrization of aerodynamic shapes 
is the Class Shape Transformation functions (CST) 
[3]. It is an analytical approach based on the 
combination of a class function, which defines the 
type of geometry, and a shape function, which is 
decomposed into several polynomials and provides 
local geometric control. This methodology was 
extended to the Intuitive approach (iCST) [4] and it 
has been applied to different propulsion system 
component shapes as intakes [5,6], nacelles [7] and 
axisymmetric exhaust systems [8,9]. A first 
extension of the method to the design of non-
axisymmetric exhaust systems for nozzle 
performance assessment has been conducted [10]. 
It is based on the combination of longitudinal and 
azimuthal iCSTs. The modification of circular 
shapes of the fan cowl through geometric azimuthal 
variations could ensure sufficient ground and wing 
clearance and minimize the aerodynamic 
interference for closely coupled configurations. 
 
The developments in compressible Computational 
Fluid Dynamics (CFD) methods during the past 
decades have made it possible to predict with 
increased fidelity aerodynamic transonic flows in 
systems such as turbofan exhausts. Recent studies 
that use Reynolds Averaged Navier Stokes 
equations (RANS) [11]   are focused on single-
stream conical nozzles. Research has also been 
conducted successfully on complex 3D double 
stream nozzles [12] with satisfactory results 
compared to experimental data [13].  
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The problem of the design of exhaust systems for 
installed power plant configurations relies on the 
large number of degrees of freedom (DoF) needed. 
This number is increased for non-axisymmetric 
configurations. This aspect, combined with the 
computational time required by CFD simulations, 
limits the design capabilities. Such Issue could be 
partially addressed with low order models as 
surrogates. These models have been proved to 
predict the afterbody drag coefficient with an 
uncertainty of +-0.01 for single stream transonic jet 
flows over large regions of the design space when 
combined with high-fidelity CFD samples [14]. Other 
examples of surrogate modelling and application 
[15,16,17] have been conducted on 2D 
axisymmetric separate-jet exhausts, where a 
framework for design and optimization of these 
geometries is introduced. It has been demonstrated 
that this approach can rapidly identify dominant 
design parameters and alleviate adverse flow 
phenomena that penalise the nozzle performance. 
A similar implementation has also been applied to 
intake and nacelle design [18,19,20]. 
 
For complete propulsion system-airframe 
configurations, even the acquisition of enough data 
to build a surrogate model is unfeasible. In this 
context, multi-fidelity surrogate models gain 
interest. These models are trained with a large low-
fidelity data set combined with a reduced number of 
high-fidelity samples. With this approach, the 
number of high-fidelity points required to predict the 
function over the design space can be dramatically 
reduced. Some examples of multi-fidelity surrogates 
are co-kriging [21], Multi-fidelity Neural Networks 
[22] and Polynomial Chaos regression [23]. Co-
kriging is used in this work due to the reduced data 
required to build prediction models. As ordinary and 
universal kriging, co-kriging is a Gaussian 

regression process initially used in geo-statistics 
[24]. Previous works have combined different 
numerical models of different fidelity such as Euler 
inviscid and RANS methods  [25].  
 
The goal of this work is to establish a multi-fidelity 
framework for the aerodynamic assessment of 
airframes with installed propulsion systems. This 
will enable wider explorations of the design space 
and the reduction of computational resources 
required. A co-kriging multi-fidelity surrogate model 
is developed. The model is trained with two sets of 
data of different fidelity that are Euler inviscid and 
RANS turbulent methods respectively. The 
surrogate is applied to predict the aerodynamic 
performance of non-axisymmetric engine exhaust 
designs for complete aircraft configurations. 
 
2. METHODOLOGY 

2.1. Geometry 

The geometry considered within this work is 
representative of an Ultra High Bypass Ratio Engine 
(UHBRE) with a bypass ratio of 𝐵𝑃𝑅 ≈ 18 and a 
compact nacelle. The main dimensions of the 
nacelle are 𝐿𝑛𝑎𝑐  /𝑅ℎ𝑖 = 3.1 and 𝑅𝑛𝑎𝑐 /𝑅ℎ𝑖 = 0.91 
(Fig. 1a). The engine is mounted under the NASA 
Common Research Model (CRM) [26] with a pylon 
and it is pitched (𝜃𝑝𝑖𝑡𝑐ℎ = 1.75𝑜) and toed (𝜃𝑡𝑜𝑒 = 2.25𝑜). 3D geometry parametrizations of the 
nacelle, intake and exhaust have been developed 
using iCSTs [3,4,5,6,7,8,9]. 
 
A non-axisymmetric parametrization of the fan cowl 
trailing edge is defined to understand how RANS 
and Euler simulations correlate for complete aircraft 
configurations. The parametrization consists of the 
axial component of a rotation around any desired 
axis along the azimuthal position of the exhaust. It 
is represented by two DoF, 𝜃𝑠ℎ𝑒𝑎𝑟  or the shear angle 

Figure 1. Propulsion system geometry used (a) and shear parametrization applied (b). 
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and 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟or the azimuthal position with maximum 
offset due to the transformation (Fig. 1b). The out-
board region of the propulsion system corresponds 
to the azimuthal positions 𝜓 = 0𝑜 to 180𝑜, while the 
in-board region ranges from 180𝑜 to 360𝑜. The 
design system enables the geometry to be modified 
from the axisymmetric design to the required 
sheared case, but also adjusts the radial position to 
ensure that the bypass and core areas are 
maintained. The area matching criterion sets a 
constant core trailing edge radius constraint that 
results into longer core cowls. 
 
The engine installation location is defined as the 
position of the upper part of the fan cowl trailing 
edge with respect to the wing leading edge at a fixed 
spanwise location (Fig. 2). For non-axisymmetric 
configurations, the installation position is based on 
the axisymmetric equivalent design. 
 

 
Figure 2. Definition of the installation position. 

2.2. Numerical methods 

Various CFD methodologies of different fidelities 
are used. The Euler inviscid approach is selected as 
the low-fidelity (LF) model and RANS as the high-
fidelity (HF) model. The RANS equations are solved 
with a preconditioned density-based algorithm 
coupled with the k-ω SST turbulence model. Both 
CFD models include variations of the air properties 
with respect to the temperature. Numerical 
schemes are 2nd order and the default gradient 
interpolation methods are Green Gauss node based 
[27]. 
 
CFD meshes are fully unstructured and are built 
following a hybrid approach. It combines 
tetrahedrons for the potential flow regions of the 
flow and triangular prisms close to the surfaces to 
solve the boundary layer. The meshes are of the 
order of 100M cells for RANS and of 20M cells for 
Euler simulations (Fig. 3). The hybrid meshing 
approach for viscous transonic nozzle flows is 
validated against the experimental measurements 
undertaken on the static Dual Separate Flow 
Reference Nozzle (DSFRN) [12,13]. The error 
obtained with respect to the experiments is of the 
order of 1𝑒−5 in terms of exhaust velocity 

coefficients. The meshing approach for the airframe 
is validated with the experimental data from the 
NASA Common Research Model (CRM) [26].  The 
computational method overpredicts by 14 and 16 
drag counts the airframe drag on the clean wing 
CRM and the throughflow nacelle CRM 
configurations, respectively [28,29]. 
 

 
Figure 3. Comparison of Euler and RANS meshes. 

All the studies were conducted at mid-cruise 
operating conditions (𝑀∞ = 0.85, ℎ = 10688𝑚) with 
fixed Fan Nozzle Pressure Ratio (𝐹𝑁𝑃𝑅 = 2.2) and 
Core Nozzle Pressure Ratio (𝐶𝑁𝑃𝑅 = 1.57). The 
static pressure 𝑝∞, static temperature 𝑡∞, and 
density 𝜌∞ are computed with the International 
Standard Atmosphere (ISA) model. The internal 
flow of the engine is only computed at the intake, 
ducts and nozzles. The fan face is modelled as a 
mass flow boundary condition where the model is 
set to capture the intake stream tube. Both bypass 
and core duct inlets are modelled as fixed total 
pressure boundary conditions to ensure the desired 
nozzle pressure ratios. All the walls have been 
considered non-slip for RANS and slip for Euler 
computations. The problem is closed with a 
pressure far field applied to the external boundary 
and a symmetry condition on the airplane symmetry 
plane [12]. 
 
2.3. Thrust and Drag accounting system 

The modified near-field method [30] is used to 
determine the metrics of interest in an aerodynamic 
reference frame. The main metric to be maximised 
for complete aircraft configurations is the net vehicle 
force (NVF) (Eq. 1). The key aspect is to split this 
metric into its thrust and drag components (Fig. 4). 
For simplicity, only the computation of the drag 
component of the forces is considered, but the 
formulation on the lift direction follows a similar 
construct.  
 𝑁𝑉𝐹 = (𝐺𝑃𝐹∗)𝐷𝑐 − 𝐷𝑛𝑎𝑐∗ − 𝐹𝐺0𝐷 − 𝐷𝐴/𝐹 (1) 

 
 (𝐺𝑃𝐹∗)𝐷= 𝐹𝐺19𝐷 + 𝐹𝐺9𝐷 − 𝜃𝐶𝐶𝐷 − 𝜃𝑝𝑙𝑢𝑔𝐷 − 𝜃𝑝𝑦𝑙𝑜𝑛𝐷 (2) 

          

+Z

+X-X

       
                     



 4 

 𝐷𝑛𝑎𝑐∗ = 𝜙𝑝𝑟𝑒𝐷 + 𝜙𝑐𝑜𝑤𝑙𝐷 + 𝜙𝑝𝑦𝑙𝑜𝑛𝐷 (3) 

 𝐹𝐺0 = 𝑚̇𝑓𝑎𝑛𝑣∞ (4) 

 𝐺𝑃𝐹∗ stands for modified Gross Propulsive Force 
(Eq. 2), 𝐷𝑛𝑎𝑐∗  (Eq. 3) is the modified nacelle drag, 𝐷𝐴/𝐹 represents the airframe drag and 𝐹𝐺0 (Eq. 4) is 

the intake momentum where 𝑚̇𝑓𝑎𝑛 refers to the 

captured fan mass flow. 𝐹𝐺9 and 𝐹𝐺19 stand for 
gauge forces at nozzle inlets and 𝜙 and 𝜃 refer to 
drag terms. IPF is the Ideal Propulsive Force and it 
is computed with the mass flow obtained with CFD 
and the velocity of an isentropic and perfectly 

expanded jet (𝑣𝑖𝑑𝑒𝑎𝑙) (Eq. 5-6). 𝛾 refers to the ratio 
of specific heats, R is the ideal gas constant and 𝑇0 
and 𝑃0 stand for total quantities of temperature and 
pressure respectively. 
 𝐼𝑃𝐹 = 𝑚̇𝐵𝑃𝐶𝐹𝐷 ∙ 𝑣𝐵𝑃𝑖𝑑𝑒𝑎𝑙 + 𝑚̇𝐶𝑅𝐶𝐹𝐷 ∙ 𝑣𝐶𝑅𝑖𝑑𝑒𝑎𝑙 (5) 

 𝑣𝑖𝑑𝑒𝑎𝑙 = √ 2𝛾𝑅𝑇0(𝛾 − 1) (1 − (𝑝∞𝑃0 )𝛾−1𝛾 ) (6) 

 
One of the main nozzle performance indicators is 
the velocity coefficient (𝐶𝑣). It is a measure of the 
deviation of the computed propulsive force with 
respect to the ideal one. Herein this work the 
modified version is considered (𝐶𝑉∗) (Eq. 7).   
 

𝐶𝑣∗𝐷 = (𝐺𝑃𝐹∗)𝐷𝐼𝑃𝐹𝐶𝐹𝐷  (7) 

 
Discharge coefficients are also of interest, as they 
measure the deviation of the computed mass flow 

with respect to the ideal one ((𝑚̇𝐴)𝑖𝑑) at nozzle 

throats (𝐴𝑡ℎ𝑁𝑂𝑍𝑍) (Eq. 8-9). 
 𝐶𝑑𝑁𝑂𝑍𝑍 = 𝑚̇𝑁𝑂𝑍𝑍𝐶𝐹𝐷 (𝑚̇𝐴)𝑖𝑑 𝐴𝑡ℎ𝑁𝑂𝑍𝑍 (8) 

 (𝑚̇𝐴)𝑖𝑑= 𝑃0 ( 1min (𝜆, 𝜆𝑐𝑟𝑖𝑡))1𝛾
∙ √ 2𝛾(𝛾 − 1)𝑅𝑇0 (1 − ( 1min (𝜆, 𝜆𝑐𝑟𝑖𝑡))𝛾−1𝛾 ) 

(9) 

 
Drag coefficients are defined to measure the 
aerodynamics of the nacelle (Eq. 10) and airframe 
(Eq. 11). The airframe component of the forces 
includes the wing, tail and fuselage. Drag 
coefficients take into account the freestream 

velocity (𝑣∞) and a reference CRM wing area (𝐴𝑟𝑒𝑓) 
[26]. The equivalent lift coefficients are computed 
with the lift component of the forces. 
 𝐶𝐷𝑛𝑎𝑐∗ = 𝐷𝑛𝑎𝑐∗12 𝜌𝑣∞2𝐴𝑟𝑒𝑓 (10) 

 

Figure 4. Thrust and drag accounting system schematics. 
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𝐶𝐷𝐴/𝐹 = 𝐷𝐴/𝐹12 𝜌𝑣∞2𝐴𝑟𝑒𝑓    (11) 

 
To represent typical cruise conditions, the aircraft is 

trimmed at a constant 𝐶𝐿𝐴/𝐶 = 0.5. Two angles of 

attack are solved per case and the solution is 

linearly interpolated to the target 𝐶𝐿𝐴/𝐶. It includes 

the lift component of the airframe drag, the modified 
nacelle drag and modified velocity coefficient (Eq. 
12). 
 𝐶𝐿𝐴/𝐶 = 𝐶𝐿𝐴/𝐹 + 𝐶𝐿𝑛𝑎𝑐∗ + (𝐶𝑣∗)𝐿 ∙ 𝐼𝑃𝐹𝑐𝑦𝑐𝑙𝑒12 𝜌𝑣∞2𝐴𝑟𝑒𝑓  (12) 

 
2.4. Surrogate modelling using co-kriging 

Co-kriging is the surrogate model used for the multi-
fidelity assessment [21]. Co-kriging is a Gaussian 
regression process that uses two sources of data of 
different fidelity. It consists of two main steps, the 
training or fitting step and the predictor step.  
 
The predictor step uses the statistical model to 
predict the behaviour of the high-fidelity function 
(labelled as 1). The predicted values of 𝑦̂1 can be 
notated in matrixial form (Eq. 13), where only 𝑟(𝑥) 
is related to the points where the function is to be 
predicted. All the other terms (𝜙𝑀, 𝛽, 𝑅, 𝑦𝑠, 𝐹) are 
matrixes with terms to be fitted along the training 
step. The correlation matrix (𝑅) is assumed to be 

dependent on the distance between two data points 
instead of on their position (𝑥, 𝑤) (Eq. 14).  
 𝑦̂1(𝑥) = 𝜙𝑀𝑇 𝛽 + 𝑟𝑇(𝑥)𝑅−1(𝑦𝑠 − 𝐹𝛽) (13) 
 𝑅𝑖𝑗(𝜃𝑖𝑗 , 𝑥𝑖 , 𝑤𝑗) =  ∏𝑅𝑘(𝜃𝑖𝑗𝑘 , 𝑥𝑖𝑗𝑘 − 𝑤𝑖𝑗𝑘 )𝑚

𝑘=1 , (14) 

 𝑚 is the dimensionality of the problem, 𝜃𝑖𝑗 is the 

weight parameter and the sub-indexes 𝑖 and 𝑗 are 
indicative of the levels of fidelity. 𝜃𝑖𝑗 are some of the 

parameters that have to be fitted. The regression 
models (𝑅𝑘) employed are Gaussian (Eq. 15) and 
cubic spline (Eq. 16). 
 𝑅𝑘(𝜃, 𝑥𝑘 − 𝑤𝑘)𝐺𝐴𝑈𝑆𝑆 = exp(−𝜃(𝑥𝑘 −𝑤𝑘)𝑗2) (15) 

 

 𝑅𝑘(𝜃, 𝑥𝑘 − 𝑤𝑘)𝐶𝑆𝑃𝐿 =  
(16) 

{   
   

 

1 − 15(𝜃|𝑥𝑘 − 𝑤𝑘|)2 +30(𝜃|𝑥𝑘 − 𝑤𝑘|)3, 

0 ≤ 𝑥𝑘 − 𝑤𝑘  ≤ 0.2 1.25(1 − 𝜃|𝑥𝑘 − 𝑤𝑘|)3, 
0.2 < 𝑥𝑘 − 𝑤𝑘< 1 0, 𝑥𝑘 −𝑤𝑘  ≥ 1 

 
The model is fitted through the maximization of the 
likelihood function. The implementation reduces the 
number of independent parameters by the 
derivation of analytical expressions for the optimum 
values of some of them (Eqs. 17-18). 

 

Figure 5. Pressure distribution for the full airframe-engine system resolved with Euler and RANS models at 
the underside (a) and topside (b) views at an angle of attack of 2o 
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𝑙𝑛[𝐿(𝜃11, 𝜃22, 𝜃12)]= −12 [(𝑛1 + 𝑛2) ∙ ln(𝜎12) + ln(|𝑅|)] (17) 

 𝜃11, 𝜃22, 𝜃12 = 𝑎𝑟𝑔𝑚𝑎𝑥[ln (𝐿)] (18) 

 𝑛1 and 𝑛2 correspond to the number of high and low-
fidelity data samples respectively and 𝜎12 refers to 
the correlation between LF and HF data. The 
maximisation of this function is conducted with the 
COBYLA optimization algorithm [31].  
 
3. RESULTS AND DISCUSSION 

3.1. Euler and RANS CFD assessment 

Euler model simulations are used together with a 
reduced number of RANS simulations in the multi-
fidelity framework presented. Euler simulations are 
36 times faster with respect to RANS (Table 1.) This 
opens the opportunity to cover wider design spaces 
using Euler computations and assess fewer points 
with RANS. 
 

Table 1. Comparison of Euler and RANS 
computational performance. 

Type Cores Mesh Time per case 

RANS 128 100M cells 36t 

Euler 128 20M cells t 

 
The first stage towards the establishment of the 
multi-fidelity approach is to understand the 
difference between RANS and Euler simulations. A 
back to back comparison is conducted in terms of 
the flow field of an installed propulsion system with 
an axisymmetric exhaust.  A Design Space 
Exploration (DSE) of the shear parametrization 
applied to the same engine is evaluated in terms of 
the performance metrics. The DSE is conducted 
using both Euler and RANS models.  
 
The complete airframe-engine system is assessed 
with the engine installed at position 𝑑𝑥/𝐶 = 0 and 𝑑𝑧/𝐶 = 0.075 (Figs. 5-6). The configuration with an 
axisymmetric exhaust system (Figs 5, 6a and 6b) is 
used as a reference to assess the benefits 
produced by the non-axisymmetric exhausts. The 
flow field is analysed in terms of pressure coefficient 
distributions (Eq. 19).

  
Figure 6. Pressure distribution on the in-board and out-board sides of the engine. It includes the 

axisymmetric engine resolved with the Euler (a) and RANS (b) models as well as the design with 𝜃𝑠ℎ𝑒𝑎𝑟 = 6𝑜 

and 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 180𝑜 evaluated with RANS (c). 
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𝐶𝑝 = (𝑝 − 𝑝∞)/ (12 𝜌∞𝑣∞2 ) (19) 

 
Overall the flow is well predicted by the Euler model, 
but some differences can be observed. In the 
airframe underside view (Fig. 5a) the lower-fidelity 
model overpredicts the strength of the shock waves 

located on the channel flow composed by the 
fuselage, pylon and engine. This effect is related to 
the lack of viscous dissipation. In addition, all the 
shock waves predicted by the Euler computations 
are slightly displaced downstream. The pressure 
distributions on the engine (Figs. 6a-6b) illustrate 
that the Euler solution accurately represents the 

Figure 7. Results summary of the shear parametrization DSE. Results of 𝐶𝑣∗𝐷 (a), 𝐶𝐷𝑛𝑎𝑐∗(b), 𝐶𝐷𝐴/𝐹(c), NVF 

(d), 𝐶𝑑𝐵𝑃(e) and 𝐶𝑑𝐶𝑅(f) are displayed for both Euler and RANS computations. 
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topology of the under-expanded jet flow ejected 
from the bypass nozzle. There are minor differences 
in the flow at the in-board side of the nacelle. 
Additionally, the strength of the discontinuities is 
greater in Euler for the first and pylon trailing edge 
shock waves. The pressurisation of the core cowl 
seems to be reduced compared to the RANS 
equivalent. In opposition, it is increased on the plug. 
On the out-board side, the strength of pylon trailing 
edge shock and the expansion after the nacelle 
shock wave are both magnified if the Euler model is 
used.  
 
A design space exploration (DSE) of the shear 
parametrization is conducted with a fixed shear 

angle  𝜃𝑠ℎ𝑒𝑎𝑟 = 6𝑜 . 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟  varies around the 
azimuthal position of the fan cowl trailing edge 

(𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 0𝑜 𝑡𝑜 360𝑜). The RANS model predicts a 

maximum of 𝐶𝑣∗𝐷  (Fig. 7a) around 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 150𝑜. 

The reason is the modification of the thrust vector 
and its closer alignment with the drag direction, 
which implies a reduction of the thrust loss due to 
pitch and toe angles. The difference of the exit plane 
inclination of both nozzles slightly modifies the 
exhaust direction of the bypass flow with respect to 
the core. 
 

The 𝐶𝐷∗𝑛𝑎𝑐 (Fig. 7b) is greatly reduced at 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 =0𝑜 𝑡𝑜 200𝑜 because the fan cowl is shortened on the 
regions with higher suction of the in-board side. On 
the other hand, 𝐶𝐷𝐴/𝐹 (Fig. 7c) is increased along 

the same azimuthal span. The changes to the 
airframe drag are produced by a mixture of effects. 
First, there is an increase of induced drag due to the 
trim procedure. The exhaust force contributes less 
to the system lift because of the changes in thrust 
vector.  𝐶𝐿𝐴/𝐹 is consequentially increased and it 

penalises 𝐶𝐷𝐴/𝐹. The fact that there is a difference 

of Δ𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 60𝑜 between the predicted peaks of 𝐶𝐷𝐴/𝐹  and 𝐶𝑣∗𝐷 suggests that other effects that 

increase the parasitic drag are also present.   
 
In general, Euler computations follow the same 
behaviour and trends of RANS (Fig. 7). The 

distribution and gradients of 𝐶𝑣∗𝐷 = 𝑓(𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟) are 

well represented by the Euler model. Main 
sinusoidal characteristics are captured where the 
peak-to-peak variation is around 0.15% less than 
the RANS equivalent. The low-fidelity model does 
not predict any benefit compared to its axisymmetric 
reference. In contrast, the RANS model predicts a 
maximum benefit of Δ𝐶𝑣∗𝐷 = 0.025%. The amplitude 

of  𝐶𝐷∗𝑛𝑎𝑐 = 𝑓(𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟) is over predicted by Δ𝐶𝐷∗𝑛𝑎𝑐 =5%  in Euler computations. In addition, the local 
maximum of 𝐶𝐷∗𝑛𝑎𝑐 evaluated in the Euler framework 

is at 300𝑜   relative to the 270𝑜 obtained with RANS. 
The Euler simulations overpredict the local 
maximum and minimum values of 𝐶𝐷𝐴/𝐹  by 1.6% 

compared with the RANS results. The gradient is 
not as effectively captured as for the other metrics 
because some statistical noise is induced.  
 𝐶𝑑𝐵𝑃 is decreased with respect to the axisymmetric 

cases at 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 100𝑜 𝑡𝑜 270𝑜 (Fig. 7e). The 
reason is that the bypass jet is slightly deflected 
towards the pressure side of the wing for this range 
of azimuthal positions. The static pressure on the 
pressure side of the wing is then increased and the 
in-board side shock wave over the core cowl is 
mitigated (Fig. 6c). Both effects increase the static 
pressure perceived by the bypass nozzle and 
increase the bypass flow suppression. Euler 
computations follow the same trends but are offset 
by Δ𝐶𝑑𝐵𝑃|𝐸𝑢𝑙𝑒𝑟 − Δ𝐶𝑑𝐵𝑃|𝑅𝐴𝑁𝑆 = −0.1. A similar effect 

is observed for 𝐶𝑑𝐶𝑅 (Fig. 7f). The RANS results of 𝐶𝑑𝐶𝑅 predict two local minima at 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 120𝑜 and 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 210𝑜. This is a 3D effect produced by the 

wake of the pylon and it is reduced at 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 180𝑜 
because the bypass jet deflection is normal to the 
pylon heatshield. This flow feature is not predicted 
by the Euler model, which may indicate that it comes 
from a viscous related source. Again, the lower-
fidelity model follows the same trends as the high-
fidelity one. It has a magnitude offset of Δ𝐶𝑑𝐶𝑅 =0.2 measured at the peaks and a difference in 

azimuthal position of Δ𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 30𝑜. All the 
configurations predict benefits on the core 
discharge coefficient up to 5% compared to the 
axisymmetric reference case.  
 
If all the force terms are added, the overall net 
vehicle force (NVF) is obtained (Fig. 7d). The RANS 
solution suggests that the NVF follows a Gaussian 
distribution with predicted benefits up to 0.4% at 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 120𝑜  𝑡𝑜 220𝑜. The optimum design 

assessed (𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 180𝑜) (Fig. 6c) reduces the 
strength of the shock wave located on the core cowl. 
This penalises the bypass flow discharge by a 0.3% 
through an increased pressurisation of the core 
cowl. It also benefits the core jet expansion and 
discharge. The increase in core cowl length as a 
consequence of the shear parametrization results 
into strength reduction and downstream 
displacement of the jet shock waves, which 
confirms the core flow discharge coefficient 
behaviour. NVF shows the biggest differences 
between RANS and Euler computations. The 
discrepancies in terms of amplitude and phase 
previously stated propagate to the NVF as well as 
the scatter observed on the airframe drag for the LF 
model. The result is a noisy LF data set that is 
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displaced azimuthally (θazi𝑠ℎ𝑒𝑎𝑟|𝐸𝑢𝑙𝑒𝑟 − θazi𝑠ℎ𝑒𝑎𝑟|𝑅𝐴𝑁𝑆 ≈−30𝑜) and in magnitude (Δ𝑁𝑉𝐹|𝐸𝑢𝑙𝑒𝑟 −Δ𝑁𝑉𝐹|𝑅𝐴𝑁𝑆  ≈ 0.2%).  
 
Overall the RANS simulations show a potential 
improvement of around 0.4% of the standard 
nominal net thrust for the best non-axisymmetric 
configuration tested. The maximum benefit of NVF 
is under predicted by the Euler model by 0.3%. The 
solutions of the same metric have statistical noise if 
the low-fidelity model is used. The scatter mostly 
propagates from 𝐶𝐷𝐴/𝐹. Despite the differences, 

Euler is clearly accurate enough to construct a low 
fidelity data set for wider design space explorations 
and multi-fidelity surrogate modelling. 
 
3.2. Surrogate model application  

The implementation of the co-kriging method is 
verified using an analytical case representative of 
two functions with different levels of fidelity. These 
two functions (Eqs. 20-21) have been used in the 
literature to verify multi-fidelity models [21,25]. 𝑦1 
and 𝑦2 stand for high and low fidelity function 
respectively.  
 𝑦1 = (6𝑥 − 2)2 sin(12𝑥 − 4) , 𝑥 ∈ [0,1] (20) 

 𝑦2 = 0.5𝑦1 + 10(𝑥 − 0.5) − 5, 𝑥 ∈ [0,1] (21) 

 
The co-kriging models obtained using Gaussian and 
cubic spline correlation functions are presented 
together with single-fidelity kriging models trained 
with y1 and y2 respectively (Fig. 8). 4 HF samples 
are combined with 11 LF points. The results 
highlight how a surrogate model can be improved 
by adding lower-fidelity data, as the kriging model 
through y1 is visibly inaccurate. Co-kriging results 
demonstrate the improved performance of the cubic 
spline function with respect to the Gaussian 
correlation for this case. The Gaussian model does 
not accurately represent the whole high-fidelity 
function, but the local minimum region is reasonably 
well predicted. The prediction of the cubic-spline 
function is in good agreement with the literature 
[21,25]. 
 
The prediction models are applied to the Euler and 

RANS results to determine the effect of 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 on 
the overall aircraft NVF (Fig. 7d). The goal is to 
identify the potential benefit in terms of reduction of 
the number of RANS simulations required with 
respect to a single-fidelity kriging model. A statistical 
sampling convergence analysis is performed by a 
successive increase of the number of high-fidelity 
samples used in the training step (Fig. 9). At each 
iteration, all the combinations of r HF samples are 

used from the total data set n (Eq. 22). The number 
of LF samples used in the multi-fidelity models is set 
to 13. The analysis is applied to the prediction of the 
NVF in terms of the maximum evaluated value (ΔNVF𝑚𝑎𝑥) (Fig. 9a), its azimuthal position 

( θazi𝑠ℎ𝑒𝑎𝑟|Δ𝑁𝑉𝐹𝑚𝑎𝑥) (Fig. 9b) and the root mean square 

deviation (𝑅𝑀𝑆𝐷) with respect to all the HF samples 
(Eq.23) (Fig. 9c). 
 𝑛𝐻𝐹(𝑟) = 𝑛!𝑟! (𝑛 − 𝑟)! (22) 

 
 𝑅𝑀𝑆𝐷 = √∑ (𝑦̂𝑖 − 𝑦𝑖𝐻𝐹)𝑛𝑖=1 𝑛  (23) 

 
The Gaussian co-kriging model achieves monotonic 
convergency with 5 HF samples in ΔNVF𝑚𝑎𝑥 as a 

function of  θazi𝑠ℎ𝑒𝑎𝑟  (Fig. 9a). The same model shows 
a discontinuity in convergence at 11 ≤ nHF ≤ 13. 
Such discontinuity is consequence of oversampling, 
as too many high-fidelity samples are used. The 
model is then unable to properly fit the curve. 
Consequentially, the ratio of samples of different 
fidelity should be  𝑛𝐻𝐹/𝑛𝐿𝐹 < 0.8. In opposition to 
the Gaussian co-kriging surrogate, the kriging 
model converges non-monotonically for ΔNVF𝑚𝑎𝑥. It 
is considered that the peak magnitude is converged 
if 8 or more HF samples are used, as the trend 
remains constant. The prediction of ΔNVF𝑚𝑎𝑥 is 
worse for the multi fidelity surrogate that uses the 
cubic spline model. It does not converge because of 
its increased sensitivity to the statistical noise that 
comes from the LF function.  Both Gaussian multi-
fidelity and single-fidelity models converge on  θazi𝑠ℎ𝑒𝑎𝑟|Δ𝑁𝑉𝐹𝑚𝑎𝑥 with 6 HF samples within +-15𝑜 (Fig. 

9b). The cubic spline-based model needs 8 to reach 

Figure 8. Co-kriging model verification test case. 
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the same level of accuracy. The RMSD (Fig. 9c) 
indicates that all the data points of the HF function 
are better approximated by both co-kriging models 
than for the single-fidelity surrogate.  
 
The data of the cubic spline co-kriging surrogate 

prediction is more disperse compared to the other 
models tested. This highlights again the adverse 
influence of the statistical noise for this model. The 
Gaussian model solution has some dispersion for 𝑛𝐻𝐹 < 6. This effect manifests the importance of 
the sampling strategy for a reduced number of 
training samples. An improper distribution of 
samples could result into wrong predictions and 
additional cost within an optimisation system. 
 
The improved performance of the Gaussian co-
kriging model with respect to the other two is 
confirmed if one random case with 4 HF samples is 
considered (Fig. 10). It is the only model that 
resembles the shape, gradients and peak value of Δ𝑁𝑉𝐹 = 𝑓(𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟). In addition, the statistical noise 

is filtered out of the prediction. The poor behaviour 
of the cubic spline model in the presence of 

scattered data is also highlighted. At θazi𝑠ℎ𝑒𝑎𝑟 = 0𝑜 − 100𝑜 the cubic spline-based model follows the 
trends of the lower-fidelity data and results into a 
shape that diverges from the RANS predicted curve. 
The kriging model is not able to reproduce the main 
trends of the high-fidelity function, nor the peak 
location and value for this case. 
  
The use of co-kriging for multi-fidelity analysis of 
non-axisymmetric exhaust systems has been 
proved to be potentially useful. The peak value of 
the NVF can be converged within the acceptable 
bounds with 23% less HF samples and increased 
accuracy than for single-fidelity kriging. In terms of 
computational time, it would result into a benefit of 
around 33% if Euler and RANS are considered 
(Table 1) compared to RANS only.  

Figure 9. Sampling convergence analysis for the 

prediction of 𝛥𝑁𝑉𝐹𝑀𝐴𝑋 (a), 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟|𝛥𝑁𝑉𝐹𝑀𝐴𝑋 (b) and 𝑅𝑆𝑀𝐷  (c). 

Figure 10.  Prediction models of the NVF using 4 
RANS samples. 
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4. CONCLUSIONS 

The work establishes a first step towards the multi-
fidelity assessment of installed configurations with 
non-axisymmetric exhaust systems.  
 

• The non-axisymmetric shear parametrization of 

the nacelle trailing edge can benefit the 

performance of the combined power plant-

airframe system. The optimum shear azimuthal 

position assessed is 𝜃𝑎𝑧𝑖𝑠ℎ𝑒𝑎𝑟 = 180𝑜 with a 

benefit of Δ𝑁𝑉𝐹 = 0.4% of standard nominal net 

thrust with respect to the axisymmetric 

reference. 

 

• The improved performance of a multi-fidelity co-

kriging model against the single fidelity kriging 

is proved for non-axisymmetric exhaust 

behaviour prediction of. The co-kriging model 

provides a good representation of the high-

fidelity function and it exhibits potential 

computational time benefits of 33% with respect 

to single-fidelity kriging if Euler and RANS 

models are considered. 
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