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Abstract 

The design and optimization of aero-engine nacelles in a configuration installed on the airframe may be an 

important consideration to realize the cycle benefits of new ultra-high bypass ratio aero-engines. However, this 

is typically a high-dimensional design problem and there is a need to reduce the associated computational 

costs. This work presents a method for aerodynamic nacelle optimization for an installed configuration and 

provides further knowledge about the characteristics of this design space. The methodology includes single 

fidelity surrogate models built with inviscid flow solutions. Gaussian process regression and artificial neural 

networks are tested as modelling techniques. Viscous computations are used to assess the optimized designs 

at cruise and off-design windmilling diversion condition. This approach yielded an optimal design with a 

reduction in fuel burn of about 0.56% relative to a design optimized in isolated configuration without considering 

the powerplant integration effects. The optimal design also met the robustness criteria in terms of limited flow 

separation at the windmilling diversion conditions. 
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1. Introduction 

Reduction of fuel burn is a key consideration in commercial aviation. Within this context, there has 

been an increase in the bypass ratio (BPR) of turbofan aero-engines to reduce the specific thrust 

and to increase the propulsive efficiency [1]. However, the expected associated larger fan diameter 

may incur an additional overall drag and weight penalty for the aircraft [2]. Moreover, the integration 

and interference effects of the aero-engine with the airframe may become more significant. 

Consequently, it would be beneficial to develop compact nacelles that will not erode the benefit from 

the new engine cycles. Although traditional nacelle design approaches have focused on minimizing 

the drag in isolated configuration [3,4], these modern design technologies need to consider the 

design space of the aero-engine coupled with the airframe. The aerodynamic performance of the 

nacelle installed in the airframe can deviate substantially from the isolated case due to the aero-

engine integration effects [2]. The major aerodynamic change is observed in the inboard side of the 

installed nacelle. Rudnik et al. [5] analyzed the integration aerodynamics for an Ultra High BPR-type 

of aero-engine with an A320-type airframe. It was concluded that an additional shock wave appears 

due to the installation which affects the rear part of the inboard nacelle and the pressure side of the 

wing. The intensity of the shock grows as the BPR increases. Hoheisel [6] estimated this increase in 

the drag due to the installation for a twin-engine aircraft of up to 50 drag counts which corresponds 

to about 15% of the aircraft total drag. The installation position also plays a key role in the overall 

system performance [7]. For close-coupled positions the adverse aerodynamic integration effects 

increase substantially [8] and the isolated benefit does not hold [9] which makes the installed nacelle 

design approach essential.  
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Aerodynamic shape design and optimization is a complex problem normally governed by a high 

number of design variables and non-linear flow physics. Surrogate modelling techniques have 

extensively been used in these problems to reduce the computational overhead [10-13]. Wang et al 

[14] applied a Kriging interpolation model built from viscous CFD data for the optimization of a rotor 

blade parameterized with 22 design variables. A complex optimal design with non-linear twist and 

variable chord length was obtained. Relative to a baseline design, a significant weakening in the 

blade-tip vortex was obtained with an increase in the blade efficiency of 3.4%. In the same line, 

artificial neural networks (ANN) technique has also been proven to efficiently model the non-linear 

aerodynamic behavior [15,16]. Zuccolo et al. [17] compared the modelling ability of a Kriging and an 

ANN surrogate model for the prediction of aerodynamic characteristics of exhaust afterbodies. RANS 

CFD data was used for a range of Mach numbers from 0.6 to 1.4. A better modelling performance 

was obtained for the ANN model with uncertainties in the afterbody drag for a 2σ confidence interval 
of ±0.01 and ±0.013 for the ANN and Kriging models respectively. However, there is a dearth of 

literature within the context of installed nacelle aerodynamic shape optimization. Tejero et al. [18] 

presented a method to consider the integration effects within the nacelle optimization process. The 

methodology considered both active subspaces as dimensionality reduction technique and co-

Kriging as a surrogate model. The design space was explored using a Euler computational fluid 

dynamics (CFD) model as Reynolds-Averaged Navier-Stokes (RANS) models become 

computationally prohibitive for this high dimensional problem. Historically, inviscid CFD models have 

commonly been used for powerplant integration assessments as they have been proven to capture 

the main aerodynamic interference aspects [19,20]. In the multi-fidelity co-Kriging model, the inviscid 

data is combined with few expensive RANS datapoints. As a result, an optimized nacelle design was 

obtained that provided a reduction in the fuel burn of approximately 0.65%.   

 

An additional challenge in nacelle design lies with the different flow conditions that arise throughout 

the aircraft mission. Consequently, not only cruise but also off-design windmilling conditions have to 

be considered [4,21]. This is even more significant for compact nacelles that are expected for the 

next generation of Ultra-High BPR aero-engines [4,21]. The reason is that as the nacelle becomes 

more compact the curvature gradients along the nacelle are higher and therefore the aerodynamic 

sensitivity to off-design conditions increases.  

 

This paper presents a methodology for compact and aerodynamically robust nacelle optimization for 

an installed configuration using a single fidelity surrogate modelling approach based on Euler 

computations. Kriging interpolation and ANN are used as low-order models. The novelty of the paper 

is in the use of ANN as surrogate modeling technique for nacelle optimization and the consideration 

of robustness to off-design conditions within a nacelle optimization process for an installed 

configuration. 

 

2. Methodology 

The proposed optimisation method is based on the cruise condition with a subsequent assessment 

of the optimised design at windmilling diversion condition to ensure the aerodynamic robustness of 

the design (Table 1). This robustness assessment at windmilling diversion conditions is based on a 

flow separation criterion with a limit of 10% of the nacelle length. Good aerodynamic performance 

under windmilling diversion conditions are needed for a sufficient range under extended range twin 

engine operational performance standards (ETOPS) [22]. 

 

 Mach number MFCR CL-Trim 

Cruise 0.85 0.7 0.5 

Windmilling diversion 0.65 <0.5 0.44 

Table 1 – Definition of each operating condition considered in the optimization method. 
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2.1 Geometry definition 

The installed nacelle geometry is parameterized through intuitive class shape transformations 

(iCSTs) [23]. The iCSTs control 8 different azimuthal aero-lines of the nacelle (Figure 1a). As this 

work is focused on a compact nacelle architecture given by Lnac/rhi = 3.1 and rte/rhi = 0.95, 4 intuitive 

variables per aero-line are changed in the design process: rif, rmax, fmax and βnac (Figure 1b). The full 

installed nacelle geometry is defined by 32 variables. However, from a computational cost point of 

view the dimensionality of the problem has to be reduced. In the proposed methodology, 3 aero-lines 

in the inboard side of the nacelle are selected (ψ = 45⁰, 90⁰ and 135⁰, Figure 1a). The reason is that 

the aero-engine aerodynamic integration effects primarily affect the inboard part of the nacelle. The 

outboard side is maintained from a baseline design which was obtained through a nacelle 

optimization process for an isolated configuration using the method developed by Tejero et al. [3]. 

This design has inboard-outboard symmetry and is used as reference in the present work relative to 

which the benefits are reported. The method used to design the nacelle in isolation is based on a 

multi-point optimization approach that considers operating conditions both in the cruise segment and 

at off-design windmilling conditions. A CFD-in-the-loop technique driven by a genetic algorithm is 

applied with about 5000 3D RANS calculations per optimization. This baseline design is robust for 

off-design windmilling conditions which is a key aspect for compact nacelle architectures [21]. The 

windmilling diversion condition is characterized by a very low mass flow capture ratio (MFCR) and 

the initial forebody radius at the nacelle leading edge (rif) becomes the key parameter to control flow 

separation over the nacelle forebody. Therefore, rif is kept constant as per the reference design in 

every aero-line to enable acceptable aerodynamics at windmilling diversion conditions. Overall, 9 

design variables control the degrees of freedom for the installed nacelle design (Figure 1). Fixed 

intake offset and scarf angle are also considered to improve the aerodynamic performance of the 

nacelle at incidence (Figure 1b) [24]. A detailed description of the nacelle parameterisation through 

iCST was provided by Tejero et al. [25].  

 

 
a) Azimuthal aero-lines 

 
b) Parameterisation of a 2D aero-line 

Figure 1 - Installed nacelle parameterization. Aero-lines and parameters marked in red are the design 
variables of the proposed design method. 

 

The full aero-engine configuration is generated by combining the nacelle design with a representative 

intake [26] and separate jet exhaust [27] which have been designed to alleviate adverse flow features 

across the investigated design space. The resulting powerplant is representative of an Ultra-High 

BPR configuration with a standard net thrust (FN) of approximately 60kN [27]. The propulsion system 

is integrated in the airframe through a representative pylon [28]. The NASA common research model 

(CRM) is used as the airframe as it is representative of a wide-body twin-engine commercial transport 

aircraft [29]. The installation position is defined by the axial (dx) and vertical (dz) offset between the 

wing leading edge and the nacelle top line trailing edge [28,9]. An expected installation position for 

future civil aero-engines is considered: dx/Cwing = 0 and dz/Cwing = 0.1, where Cwing is the local wing 

chord. In common with the CRM throughflow configuration, the powerplant is installed at 33.4% of 
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the semi-span wing length from the fuselage mean axis with a pitch-up and toe-in angles of 1.75⁰ 
and 2.25⁰, respectively [29].  

2.2 Numerical method 

Two CFD fidelities are used in this work to accelerate the design process. The low-fidelity model 

solves the compressible and inviscid flow governed by the Euler equations through a pressure-based 

solver [30]. This model is used to understand the design space and to generate a database to build 

the surrogate models. The higher-fidelity model solves the viscous and compressible flow governed 

by the Reynolds-Averaged Navier-Stokes equations through an implicit and density-based solver 

[30]. The RANS model is used to provide the final evaluation of the down selected optimal designs 

both at cruise and windmilling diversion condition. In the RANS CFD model, turbulence closure is 

achieved by the k-ω SST model [31]. Upwind second order spatial discretization and Green-Gauss 

node-base scheme are used in both models.  

 

A hemispherical domain with half of the aircraft configuration is used due to the left-right symmetry 

of the model and helps to reduce the computational overhead. From the 4th AIAA Drag Prediction 

Workshop [32], the radius of the hemispheric domain is set to 100 times the local wing chord at the 

installation spanwise location. The domain is discretized using a hybrid meshing strategy composed 

of prism layers in the boundary layer and tetrahedral elements far from the walls. In the RANS model, 

a y+ below 1 is ensured in every surface to resolve the boundary layer, which results into an overall 

cell count of 115 million elements. The model validation and mesh independence studies were 

conducted by Goulos et al [28]. For the inviscid model, the overall mesh is coarsened by a factor of 

approximately 2 and the refinement in the boundary layer is removed. The total cell count reduces 

to about 20 million elements. The computational cost of the Euler-based model is reduced by a factor 

of about 30 relative to a RANS calculation which is a key aspect to enable an exploration of the 

design space.  

 

The freestream conditions are imposed in the form of a pressure-farfield boundary condition in the 

farfield boundaries. Static temperature and pressure and flight Mach number are set. The fan face is 

modelleded by a pressure-outlet boundary condition with a target mass flow from the corresponding 

operating condition. A pressure intlet boundary condition is set both in the core and bypass exhaust 

inlet boundaries. Total pressure and temperature are specified from the prescribed engine cycle. The 

model symmetry plane is modeled with a symmetry boundary conditon. Finally, slip and non-slip wall 

conditions are imposed in the remainding model boundaries for the Euler and RANS calculations 

respectively. 

 

2.3 Thrust and drag accounting system 

The overall performance of full aircraft system is evaluated through a Thrust-Drag Accounting method 

based on industrial standard practices [33] and extended to account for the pylon and airframe effects 

by Goulos et al. [28] (Figure 2). The forces are considered positive in the downstream direction. The 

streamtube-external forces define the drag domain and are represented by 𝜙 while the streamtube-

internal forces correspond to the thrust domain and are expressed by 𝜃. The gauge stream forces 

across the boundaries (𝐹𝐺) are calculated by integrating the pressure and momentum terms over the 

area of interest and the exerted forces on the engine walls are computed by integrating the pressure 

and viscous terms. The Net Propulsive Force (NPF) (Eq. 1) is the metric used to quantify the overall 

engine performance and accounts for the aerodynamic balance between the thrust and drag 

domains. Whereas the thrust domain is represented by the Gross Propulsive Force (GPF) (Eq. 2) 

the drag domain is defined by the modified nacelle drag (𝐷𝑛𝑎𝑐∗ ) (Eq. 3). Similarly, the Net Vehicle 

Force (NVF) (Eq. 4) reports the overall aerodynamic performance of the combined airframe and 

powerplant system through the difference between the aero-engine NPF and airframe drag (Daf). 

NVF is the key metric which leads the nacelle optimisation method. 
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Figure 2 – Thrust and drag accounting method for the installed nacelle configuration. 

 𝑁𝑃𝐹 = 𝐺𝑃𝐹∗ − 𝐹𝐺0 − 𝐷𝑛𝑎𝑐∗ (1) 𝐺𝑃𝐹∗ = 𝐹𝐺13 + 𝐹𝐺7 − (𝜃𝑏𝑝 + 𝜃𝑐𝑐 + 𝜃𝑐𝑜 + 𝜃𝑝𝑙𝑢𝑔 + 𝜃𝑝𝑦𝑙𝑜𝑛) (2) 𝐷𝑛𝑎𝑐∗ = 𝜙𝑝𝑟𝑒 + 𝜙𝑛𝑎𝑐 (3) 𝑁𝑉𝐹 = 𝑁𝑃𝐹 − 𝐷𝑎𝑓 (4) 
 

2.4 Surrogate modelling techniques 

The transonic aerodynamics of compact nacelles is highly non-linear. Kriging interpolation and 

artificial neural networks are used in this work due to their ability to handle non-linear characteristics. 

2.4.1 Gaussian process regression (Kriging) 

The Gaussian process regression, or Kriging method, is used to create single-fidelity surrogate 

models [34]. A surrogate model based on Kriging approximates the value of a function 𝑦(𝑥) by a 

linear combination of a regression 𝜇(𝑥) and a correlation functions 𝑧(𝑥) (Eq. 5). 𝑦̂(𝑥) = 𝜇(𝑥) + 𝑧(𝑥) (5) 
The regression function is a linear combination of 𝑝 polynomials of order 0 ≤ 𝑝 ≤ 2, where 𝛽 = (𝛽0, 

...𝛽𝑘, ...𝛽𝑝) corresponds to a vector of regression coefficients (Eq. 6). The parameter 𝑝 defines the 

order of the regression function which can be constant (𝑝 = 0), linear (𝑝 = 1) or quadratic (𝑝 = 2). If a 

constant regression model is used, the function will have 𝑝 = 1 and 𝑓𝑘 = 1 [34,17]. 

The correlation function 𝑧(𝑥) has the form of a stochastic process of Gaussian distributions with zero 

mean and standard deviation 𝜎 (Eq. 7) [17]. It is a combination of one-dimensional correlations that 

are functions of the position between a point 𝑥 relative to the rest of the points of the dataset 𝑁. 𝛾𝑖 
are weighting coefficients, 𝑅𝑗 is one of the 𝑑𝑖𝑚 𝑁𝑥𝑁 correlation matrices where 𝑑𝑖𝑚 is the 

dimensionality of the problem, 𝑤𝑖𝑗 − 𝑥𝑖𝑗 relates to the distances between points in the dataset and 𝜃 

is the correlation parameter between input samples. 𝑟(𝜃, (𝑤𝑖𝑗 − 𝑥𝑗) is a column vector that accounts 

for the distances between the target point 𝑥 to all other input points. The correlation matrix of the 

dataset is approximated by correlation functions. Different correlation functions such as absolute 

exponential, squared exponential, cubic and linear functions are considered within this work to find 

the best fit of the model (Table 2). 

𝜇(𝑥) = ∑𝛽𝑘𝑓𝑘(𝑥)𝑝
𝑘=0 (6) 

𝑧(𝑥) =∑ϒ𝑖∏𝑓(𝑅𝑗 (𝜃, (𝑤𝑖𝑗 − 𝑥𝑖𝑗)) , 𝑟 (𝜃, (𝑤𝑖𝑗 − 𝑥𝑗)))𝑑𝑖𝑚
𝑗=1

𝑁
𝑖=1 (7) 

The correlation matrix contains 1.0 on its diagonal as it represents the correlation of one point with 

itself. This forces the prediction model to pass exactly through the input data points and may cause 
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overfitting for problems where the input data has some amount of noise. This issue can be addressed 

with the addition of a controlled uncertainty parameter to the diagonal of the matrix that allows the 

surrogate model to float around the training points. This parameter is called a nugget (𝜖). The 

selection of regression and correlation functions, as well as nugget is problem dependent and it is 

studied in this work to the design space of installed nacelles. To use Kriging as a prediction model 

for unknown data points, it first needs to be trained. The training step of the model consists of the 

determination of the hyperparameters of the Kriging model and this is done through the maximization 

of the likelihood function [34]. 

 

Correlation function 𝑹𝒋 (𝜽, (𝒘𝒊𝒋 − 𝒙𝒊𝒋)) 
Absolute exponential 𝑒−𝜃|𝑤𝑗−𝑥𝑗| 
Squared exponential 𝑒−𝜃(𝑤𝑗−𝑥𝑗)2 
Cubic 1 − 3𝜀2 + 2𝜀3, 𝜀 = min⁡(1, 𝜃|𝑤𝑗 − 𝑥𝑗|) 
Linear 𝑚𝑎𝑥(0,1 − 𝜃|𝑤𝑗 − 𝑥𝑗|) 

Table 2 – Correlation functions considered for the Kriging surrogate model. 

2.4.2 Artificial neural network 

An artificial neural network is a parallel computational model that imitates the processing behaviour 

of the human brain [35]. The elemental unit of an ANN is called a neuron. The layout of an ANN is 

composed of a set of neurons divided into layers which are interconnected (Figure 3a). There are 

three types of layers: input layer, hidden layers and output layer (Figure 3a) [36]. The hidden layers 

are the main processing elements of an ANN and the number of them depends on the complexity of 

the system to be modelled. There are two types of networks: (a) feed-forward networks and (b) 

recurrent networks. While in a feed-forward ANN the signal goes from inputs to outputs, back 

propagation loops of information between the different layers is enabled in recurrent ANN. The higher 

complexity of recurrent networks makes them more capable to model complex physics. However, 

the current learning algorithms of these networks are limited. In this work, feed-forward multi-layer 

perceptron (MLP) type of ANN are used.  

The mathematical model of an ANN is based on a linear combination of weighting coefficients 

between neurons (Eq. 8). The output of a neuron yk is the result of the sum of the weighted inputs to 

the neuron k plus a bias term bk which is used to improve the fitting of the modelling data (Figure 3b). 

The weighted inputs are evaluated as the product between the input signal from every j neuron xj in 

the previous layer and the corresponding weighting coefficient wkj. Additionally, an activation function 𝜑 to limit the neuron output is applied which helps in the learning process of the NN (Eq. 8) (Figure 

3b). The choice of the activation function is highly problem dependant and is selected as part of a 

hyperparameters sensitivity analysis. In this work, ReLu, Sigmoid and Hyperbolic tangent are 

considered (Table 3).  

𝑦𝑘 = 𝜑(𝑣𝑘) = 𝜑 (∑ 𝑤𝑘𝑗⁡𝑥𝑗 +⁡𝑏𝑘𝑚𝑗=1 ) (8) 
 

Activation function 𝝋(𝒗𝒌) 
ReLu 𝑚𝑎𝑥(0, 𝑣𝑘) 
Sigmoid (1 + 𝑒−𝑣𝑘)−1 
Hyperbolic tangent tanh⁡(𝑣𝑘) 

Table 3 – Activation functions considered for the ANN surrogate model. 
 



Installed nacelle optimization 

7 

 

 

 

 

a) Generic layout of a neural network b) Mathematical model of a neuron k 

Figure 3 – Artificial neural network model. 
 

In the training process of a neural network the weights and biases are adjusted so a cost function is 

minimized [37]. In this work, the absolute root mean squared error (RMSE) cost function is used 

based on NVF (Eq. 9). The widely used gradient descent algorithm called ADAM is used due to its 

fast convergence and ability to handle large datasets [38]. L2 norm regularization factors are used 

to avoid overfitting in the model. 

𝑅𝑀𝑆𝐸𝑁𝑉𝐹 = √1𝑁∑(𝑁𝑉𝐹𝐶𝐹𝐷 − NVF𝑚𝑜𝑑𝑒𝑙)2𝑖 (9) 
 

3. Results 

3.1 Design space exploration 

A design space exploration (DSE) at the cruise condition was conducted using the inviscid flow solver 

to understand the relationship between the different performance metrics (Section 2.3) and the 

design variables. A key consideration to suficiently populate the design space is the ratio between 

the number of samples in the DSE (Nsamples) and the degrees of freedom of the design problem (NDOF). 

In this case Nsamples/NDOF = 80 was used to provide an DSE of 720 designs. The Latin Hypercube 

Sampling (LHS) technique was used. 

 

The DSE highlights trade-offs between the NPF and Daf components of the overall NVF (Eq. 4) 

(Figure 4a). The optimal design space for maximum NVF benefits within this DSE is located at the 

regions of NPF benefits but with some Daf penalties (Figure 4). NPF is decomposed into its 

constituent metrics to understand the impact of the nacelle drag and the thrust (Eq. 1). The designs 

with the maximum NVF benefits are located in the zone of D*nac benefits and GPF* penalties (Figure 

4b). This highlights the general opposing effects of the nacelle geometry changes on the nacelle and 

airframe aerodynamics. The best design from this DSE has an inviscid NVF benefit relative to the 

baseline of ΔNVF/FN = 0.75%. This NVF benefit comes from the balance between ΔDaf/FN = -1.55%, 

ΔD*nac/FN = 3.20% and ΔGPF*/FN = -0.90%. Athough there is a penalty in airframe drag and gross 

propulsive force of the engine, the benefit achieved in the reduction of the nacelle drag is more 

beneficial and the overall system NVF is improve. The CFD assessment consider a retrimming to CL 

= 0.5 as per the CRM cruise condition [29] to account for the changes in lift.  
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a) NPF benefit against Daf benefit b) D*nac benefit against GPF* benefit 

Figure 4 – Design space from the Euler DSE coloured by NVF benefit. 

 

There is an interest in understanding the relationship between the different design variables with the 

key metric NVF. The whole NVF range is split into different subranges of NVF benefit to identify the 

region of the optimal design space for each design variable (Figure 5). There is not a clear trend of 

the βnac at every aero-line of the inboard part of the nacelle with the NVF. It can be concluded that 

fmax and rmax are the dominant variables from a NVF optimization point of view for the design method 

proposed. In particular, there is a clear trend for rmax,45 and fmax for all aero-lines to low values and 

rmax,90 to high values of the considered design space. rmax,135 stays around the middle of the analyzed 

design space.  

 

Figure 5 – Impact of the design variables on the NVF benefit. 
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3.2 Construction of the surrogate models 

Both the Kriging and the ANN surrogate models have been built through an optimization process of 

the different hyperparameters of the model. This requires an independent validation dataset used to 

evaluate the predicting performance of each surrogate model built. An addition LHS for a ratio of 

Nsamples/NDOF = 20 has been used for this purpose. The minimization of the RMSENVF (Eq. 9) has been 

used to optimize the surrogate model fitting.  

 

For the Kriging model four correlation function have been considered: absolute exponential, squared 

exponential, cubic and linear. Additionally, constant, linear and quadratic regression function have 

been tested. The nugget factor has been variated from 1e-5 to 1e-9. The highest modelling 

performance has been found for the absolute exponential correlation function, the quadratic 

regression function and a nugget value of 1e-7 (Figure 6a). The cross-validation based on NVF of the 

selected model with the CFD independent dataset yields a RMSENVF of 0.117% of the standard net 

thrust (FN) (Figure 6b). 

 

The optimization of the ANN model considers three activation functions: ReLu, sigmoid and 

hyperbolic tangent. For each activation function different networks architectures have been built. The 

number of hidden layers has been varied from 10 to 22. The neurons number per layer ranged from 

20 to 320. The L2 norm regularization factors have been changed from 10-3 to 10-6. The optimal ANN 

model has been found for a RMSENVF of 0.124% of the standard net thrust for a combination of ReLu 

activation function, 13 hidden layers with 320 neurons and 10-4 as regularization factors (Figure 7).  

 

 

 

a) Hyperparameters optimization for the 

Kriging surrogate model. 

b) Cross-validation based on NVF of the 

selected Kriging surrogate model. 

Figure 6 – Kriging surrogate model. 

 

Overall, similar modelling performance for ΔNVF prediction have been found for both the Kriging and 

the ANN models based on the RMSENVF as a global measure unit of uncertainty. Additionally, the 

models have been interrogated in the analyzed design space to test their response against the trends 

of the CFD-based design space. A 1-dimensional interrogation for each design variable has been 

performed by keeping the rest of the parameters fixed to the baseline nacelle design (Section 2.1). 

The same trend for each variable is found not only between the Kriging and the ANN models but also 

with the CFD-based design space exploration results (Figure 5, Figure 8). As stated before, the 

impact of βnac is neglectable in comparison with fmax and rmax. The capability of the Kriging technique 

to estimate the uncertainty in the prediction shows that this is maximum in the bounds of the design 

space as could be expected. 
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a) Hyperparameters optimization for the ANN surrogate model. 

 

b) Cross-validation based on NVF of the selected ANN surrogate model. 

Figure 7 – ANN surrogate model. 

Figure 8 – 1-dimensional interrogation of the Kriging and ANN surrogate models in the analysed 

design space. 

3.3 Surrogate-based installed nacelle optimization 

To perform the surrogate-based installed nacelle optimization, the NSGA-II genetic algorithm was 

coupled with the surrogate model. The objective is to maximize the cruise NVF benefit relative to the 

baseline design. The optimization was set up with a first generation of 300 samples to ensure a good 
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coverage of the design space. Subsequently, 100 additional generations with 50 samples per 

generation were considered to ensure the optimization convergence. This optimization approach has 

been verified for different benchmark cases. The computational cost associate to the optimization is 

almost negligible as the surrogate model evaluations are rapid.  

Two independent optimizations were conducted, one with the Kriging and one with the ANN 

surrogate model. The optimal designs were evaluated with the inviscid CFD model to compare with 

the DSE results in the same currency. Relative to the baseline, the Kriging optimization found a 

design with a NVF benefit of 0.79% while the ANN yielded an optimal design with a NVF benefit of 

0.63% (Figure 9a). While the ANN optimal design is below the DSE design with highest NVF benefit 

(0.75%), the Kriging one give a very slight improvement by 0.04% (Figure 9a). A RANS assessment 

of the Kriging optimal has been conducted to find the NVF benefit when the viscous terms are also 

included. The ANN optimum has not been evaluated as it is already underperforming the best design 

from the DSE. A RANS NVF benefit of 0.56% and 0.46% have been obtained for the Kriging optimum 

and DSE best designs respectively (Figure 9b). This 0.56% benefit in NVF equates to approximately 

0.56% in fuel burn reduction. As concluded before, the 0.56% NVF improvement comes from a 

benefit in D*nac and a penalty in Daf and GPF* with reaches 2.30%, -1.04% and -0.70% respectively. 

 

 

a) Euler CFD solution. 

 

b) RANS CFD solution.  

Figure 9 – Comparison of the performance metrics for the optimal designs 

Both optimal designs and the DSE design with highest NVF follow the trends highlighted for the 

design variables at the optimal design space (Section 3.1) (Figure 10). The design optimized with 

the ANN surrogate model reaches the lower bounds of the considered design space for rmax,45, fmax,45, 

fmax,90, fmax,135 and βnac,90 which might explain the reduced NVF benefit obtained. The comparison of 

the Kriging optimum and DSE best design in the dominant variables (fmax and rmax) shows small 

changes in most of the parameters. However, there is a notable difference in fmax,45 of the order of 

one third of the investigated design space span (Figure 10). However, for the high complexity of the 

design space of this problem both designs can be considered as very similar and the difference in 

fmax,45 may be balanced with small changes in other parameters to finally yield a similar NVF benefit. 
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The fact that the design with highest NVF from the DSE is already very similar to the optimized design 

indicates that the design space has been well populated in the DSE already. However, as both 

Kriging and ANN models are acceptable to model the design space, they could be used for trade 

studies or to apply geometrical constraints in the NVF optimization. This is pertinent as the design of 

a nacelle in installed configuration is a multi-disciplinary problem and structural or mechanical 

requirements might also have to be included. 

 

Figure 10 – Design variables for the optimal designs. 

A comparison of the aerodynamics of the coupled engine-airframe configurations for the baseline 

and the optimized designs identifies the flow mechanisms that cause the overall NVF benefit. The 

reduction in ΔD*nac/FN of 2.3% is essentially driving the NVF benefit. This drag reduction arises from 

an increase in the pressurization in the afterbody of the inboard nacelle caused primarily by an 

increase in the spatial separation between the wing and the nacelle (Figure 11). This affects the 

pressure distribution on the nacelle forebody with a more monotonic distribution, a higher forward 

nacelle loading, and ultimately a reduction in the nacelle drag (Figure 11). A concomitant effect 

appears in the pressure side of the wing that increases the static pressure on the forebody and 

causes a penalty in ΔDaf/FN of -1.04% (Figure 11). 

The aerodynamic robustness of the optimized nacelle under windmilling diversion conditions has 

been assessed through a comparison of the extents of the flow separation region based on the axial 

component of the wall shear stress. While the flow separation exhibited by the baseline design is 

Lsep/Lnac ~ 6.7%, the optimized nacelle separates to approximately 9.6% of the nacelle length (Figure 

12). The optimal design is still valid as the 10% maximum limit has not been exceeded. However, 

this highlights the impact of other parameters besides rif on the windmilling diversion separation. The 

reduction of fmax and rmax for a constant rif increases the geometry curvature in the forebody and 

eventually the sensitivity to separation. This is what happens around the 45° aero-line of the 

optimized nacelle (Figure 10, Figure 12). 
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Figure 11 – Isentropic Mach number distributions for the baseline and the optimised design with 
the Kriging surrogate model. 

 

 

Figure 12 – Contours of axial wall shear stress to show the flow separation extent at windmilling 
diversion for the baseline and the optimised design with the Kriging surrogate model. 

 

4. Conclusions 

This paper has presented a method for nacelle optimization in a configuration installed on the 

airframe. The methodology combines a surrogate modelling technique with inviscid flow solutions to 

drive an optimization algorithm. A posteriori viscous CFD assessment of the optimized design is 

conducted. The approach has yielded an optimal design with a fuel burn reduction of approximately 

0.56% relative to a baseline design optimized in isolation. This highlights the benefits of considering 

the integration effects within the nacelle design process. The aerodynamic robustness to off-design 

flow conditions has been considered in the proposed methodology. The optimized installed design 

has been evaluated for the windmilling diversion condition and meets the criterion on local flow 
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separation. Additionally, acceptable modelling performance have been proven for the Kriging and 

the neural network surrogate models which could be used for trade studies or to impose geometrical 

constraints in the optimization process. 
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