3,132 research outputs found

    Comparing PyMorph and SDSS photometry. II. The differences are more than semantics and are not dominated by intracluster light

    Full text link
    The Sloan Digital Sky Survey pipeline photometry underestimates the brightnesses of the most luminous galaxies. This is mainly because (i) the SDSS overestimates the sky background and (ii) single or two-component Sersic-based models better fit the surface brightness profile of galaxies, especially at high luminosities, than does the de Vaucouleurs model used by the SDSS pipeline. We use the PyMorph photometric reductions to isolate effect (ii) and show that it is the same in the full sample as in small group environments, and for satellites in the most massive clusters as well. None of these are expected to be significantly affected by intracluster light (ICL). We only see an additional effect for centrals in the most massive halos, but we argue that even this is not dominated by ICL. Hence, for the vast majority of galaxies, the differences between PyMorph and SDSS pipeline photometry cannot be ascribed to the semantics of whether or not one includes the ICL when describing the stellar mass of massive galaxies. Rather, they likely reflect differences in star formation or assembly histories. Failure to account for the SDSS underestimate has significantly biased most previous estimates of the SDSS luminosity and stellar mass functions, and therefore Halo Model estimates of the z ~ 0.1 relation between the mass of a halo and that of the galaxy at its center. We also show that when one studies correlations, at fixed group mass, with a quantity which was not used to define the groups, then selection effects appear. We show why such effects arise, and should not be mistaken for physical effects.Comment: 15 pages, 17 figures, accepted for publication in MNRAS. The PyMorph luminosities and stellar masses are available at https://www.physics.upenn.edu/~ameert/SDSS_PhotDec

    Tunneling Potentials to Nothing

    Full text link
    The catastrophic decay of a spacetime with compact dimensions, via bubbles of nothing (BoNs), is probably a generic phenomenon. BoNs admit a 4-dimensional description as singular Coleman-de Luccia bounces of the size modulus field, stabilized by some potential V(ϕ)V(\phi). We apply the tunneling potential approach to this 4d description to provide a very simple picture of BoNs. Using it we identify four different types of BoN, corresponding to different classes of higher dimensional theories. We study the quenching of BoN decays and their interplay with standard vacuum decays.Comment: 7 page

    The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile

    Full text link
    We quantify the systematic effects on the stellar mass function which arise from assumptions about the stellar population, as well as how one fits the light profiles of the most luminous galaxies at z ~ 0.1. When comparing results from the literature, we are careful to separate out these effects. Our analysis shows that while systematics in the estimated comoving number density which arise from different treatments of the stellar population remain of order < 0.5 dex, systematics in photometry are now about 0.1 dex, despite recent claims in the literature. Compared to these more recent analyses, previous work based on Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of rho_*(> M_*) by factors of 3-10 in the mass range 10^11 - 10^11.6 M_Sun, but up to a factor of 100 at higher stellar masses. This impacts studies which match massive galaxies to dark matter halos. Although systematics which arise from different treatments of the stellar population remain of order < 0.5 dex, our finding that systematics in photometry now amount to only about 0.1 dex in the stellar mass density is a significant improvement with respect to a decade ago. Our results highlight the importance of using the same stellar population and photometric models whenever low and high redshift samples are compared.Comment: 18 pages, 17 figures, accepted for publication in MNRAS. The PyMorph luminosities and stellar masses are available at https://www.physics.upenn.edu/~ameert/SDSS_PhotDec

    Improving the accuracy of RF alternate test using multi-VDD conditions: application to envelope-based test of LNAs

    Get PDF
    Trabajo presentado al "20 Asina Test Symposium" celebrado en Nueva Delhi (India) del 20 al 23 de Noviembre del 2011.-- Reprinted from (relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the products or services of CSIC Spanish National Research Council, Digital.CSIC. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This work demonstrates that multi-VDD conditions may be used to improve the accuracy of machine learning mod- els, significantly decreasing the prediction error. The proposed technique has been successfully applied to a previous alternate test strategy for LNAs based on response envelope detection. A prototype has been developed to show its feasibility. The prototype consists of a low-power 2.4GHz LNA and a simple envelope detector, integrated in a 90nm CMOS technology. Post- layout simulation results are provided to verify the functionality of the approach. Copyright © 2011 IEEE.This work has been partially funded by a CSIC JAE-Doc contract (cofinanced by FSE), a Spanish MAE-AECID grant and projects: SR2 - Short Range Radio (Catrene European project 2A105SR2 and Avanza I+D Spanish project TSI-020400-2010-55, cofinanced with FEDER program), Auto-calibración y auto-test en circuitos analógicos, mixtos y de radio frecuencia (Andalusian Government project P09-TIC-5386, cofinanced with FEDER program), and Catrene project TOETS (CT 302).Peer reviewe

    AVOCADO: A Virtual Observatory Census to Address Dwarfs Origins

    Full text link
    Dwarf galaxies are by far the most abundant of all galaxy types, yet their properties are still poorly understood -especially due to the observational challenge that their intrinsic faintness represents. AVOCADO aims at establishing firm conclusions on their formation and evolution by constructing a homogeneous, multiwavelength dataset for a statistically significant sample of several thousand nearby dwarfs (-18 < Mi < -14). Using public data and Virtual Observatory tools, we have built GALEX+SDSS+2MASS spectral energy distributions that are fitted by a library of single stellar population models. Star formation rates, stellar masses, ages and metallicities are further complemented with structural parameters that can be used to classify them morphologically. This unique dataset, coupled with a detailed characterization of each dwar's environment, allows for a fully comprehensive investigation of their origins and to track the (potential) evolutionary paths between the different dwarf types.Comment: 4 pages, 1 figure. To appear in the proceedings of IAU Symposium 277, "Tracing the Ancestry of Galaxies on the Land of our Ancestors", Carignan, Freeman, and Combes, ed

    Dynamic exchange coupling and Gilbert damping in magnetic multilayers

    Full text link
    We theoretically study dynamic properties of thin ferromagnetic films in contact with normal metals. Moving magnetizations cause a flow of spins into adjacent conductors, which relax by spin flip, scatter back into the ferromagnet, or are absorbed by another ferromagnet. Relaxation of spins outside the moving magnetization enhances the overall damping of the magnetization dynamics in accordance with the Gilbert phenomenology. Transfer of spins between different ferromagnets by these nonequilibrium spin currents leads to a long-ranged dynamic exchange interaction and novel collective excitation modes. Our predictions agree well with recent ferromagnetic-resonance experiments on ultrathin magnetic films.Comment: 15 pages, 3 figures, for MMM'02 proceeding
    corecore