3,468 research outputs found

    Thermal conductance of two dimensional eccentric constrictions Interim report

    Get PDF
    Thermal conductance analysis on heat flow through two dimensional eccentric constriction

    A Young Planet Search in Visible and IR Light: DN Tau, V836 Tau, and V827 Tau

    Full text link
    In searches for low-mass companions to late-type stars, correlation between radial velocity variations and line bisector slope changes indicates contamination by large starspots. Two young stars demonstrate that this test is not sufficient to rule out starspots as a cause of radial velocity variations. As part of our survey for substellar companions to T Tauri stars, we identified the ~2 Myr old planet host candidates DN Tau and V836 Tau. In both cases, visible light radial velocity modulation appears periodic and is uncorrelated with line bisector span variations, suggesting close companions of several M_Jup in these systems. However, high-resolution, infrared spectroscopy shows that starspots cause the radial velocity variations. We also report unambiguous results for V827 Tau, identified as a spotted star on the basis of both visible light and infrared spectroscopy. Our results suggest that infrared follow up observations are critical for determining the source of radial velocity modulation in young, spotted stars.Comment: Accepted for publication in the Astrophysical Journal Letter

    Stability of incompressible formulations enriched with X-FEM

    Get PDF
    The treatment of (near-)incompressibility is a major concern for applications involving rubber-like materials, or when important plastic ows occurs as in forming processes. The use of mixed nite element methods is known to prevent the locking of the nite element approximation in the incompressible limit. However, it also introduces a critical condition for the stability of the formulation, called the infsup or LBB condition. Recently, the nite element method has evolved with the introduction of the partition of unity. The eXtended Finite Element Method (XFEM) uses the partition of unity to remove the need to mesh physical surfaces or to remesh them as they evolve. The enrichment of the displacement eld makes it possible to treat surfaces of discontinuity inside nite elements. In this paper, some strategies are proposed for the enrichment of mixed nite element approximations in the incompressible setting. The case of holes, material interfaces and cracks are considered. Numerical examples show that for well chosen enrichment strategies, the nite element convergence rate is preserved and the inf-sup condition is passed

    Steps Ahead in the Few-Group CRoss-Section Library Generation at the Pin Level

    Get PDF
    There exists an interest in performing pin-by-pin calculations coupled with thermal hydraulics so as to improve the accuracy of nuclear reactor analysis. In the framework of the EU NURISP project, INRNE and UPM have generated an experimental version of a few group diffusion cross sections library with discontinuity factors intended for VVER analysis at the pin level with the COBAYA3 code. The transport code APOLLO2 was used to perform the branching calculations. As a first proof of principle the library was created for fresh fuel and covers almost the full parameter space of steady state and transient conditions. The main objective is to test the calculation schemes and post-processing procedures, including multi-pin branching calculations. Two library options are being studied: one based on linear table interpolation and another one using a functional fitting of the cross sections. The libraries generated with APOLLO2 have been tested with the pin-by-pin diffusion model in COBAYA3 including discontinuity factors; first comparing 2D results against the APOLLO2 reference solutions and afterwards using the libraries to compute a 3D assembly problem coupled with a simplified thermal-hydraulic model

    SIM PlanetQuest Key Project Precursor Observations to Detect Gas Giant Planets Around Young Stars

    Get PDF
    We present a review of precursor observing programs for the SIM PlanetQuest Key project devoted to detecting Jupiter mass planets around young stars. In order to ensure that the stars in the sample are free of various sources of astrometric noise that might impede the detection of planets, we have initiated programs to collect photometry, high contrast images, interferometric data and radial velocities for stars in both the Northern and Southern hemispheres. We have completed a high contrast imaging survey of target stars in Taurus and the Pleiades and found no definitive common proper motion companions within one arcsecond (140 AU) of the SIM targets. Our radial velocity surveys have shown that many of the target stars in Sco-Cen are fast rotators and a few stars in Taurus and the Pleiades may have sub-stellar companions. Interferometric data of a few stars in Taurus show no signs of stellar or sub-stellar companions with separations of <5 mas. The photometric survey suggests that approximately half of the stars initially selected for this program are variable to a degree (1 sigma>0.1 mag) that would degrade the astrometric accuracy achievable for that star. While the precursor programs are still a work in progress, we provide a comprehensive list of all targets ranked according to their viability as a result of the observations taken to date. By far, the observable that moves the most targets from the SIM-YSO program is photometric variability.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific, 25 pages, 9 figure

    Investigating Social Haptic Illusions for Tactile Stroking (SHIFTS)

    Full text link
    A common and effective form of social touch is stroking on the forearm. We seek to replicate this stroking sensation using haptic illusions. This work compares two methods that provide sequential discrete stimulation: sequential normal indentation and sequential lateral skin-slip using discrete actuators. Our goals are to understand which form of stimulation more effectively creates a continuous stroking sensation, and how many discrete contact points are needed. We performed a study with 20 participants in which they rated sensations from the haptic devices on continuity and pleasantness. We found that lateral skin-slip created a more continuous sensation, and decreasing the number of contact points decreased the continuity. These results inform the design of future wearable haptic devices and the creation of haptic signals for effective social communication.Comment: To be published in IEEE Haptics Symposium 202

    Selective monostability in multi-stable systems

    Full text link
    We propose a robust method that allows a periodic or a chaotic multi-stable system to be transformed to a monostable system at an orbit with dominant frequency of any of the coexisting attractors. Our approach implies the selection of a particular attractor by periodic external modulation with frequency close to the dominant frequency in the power spectrum of a desired orbit and simultaneous annihilation of all other coexisting states by positive feedback, both applied to one of the system parameters. The method does not require any preliminary knowledge of the system dynamics and the phase space structure. The efficiency of the method is demonstrated in both a non-autonomous multi-stable laser with coexisting periodic orbits and an autonomous Rössler-like oscillator with coexisting chaotic attractors. The experiments with an erbium-doped fibre laser provide evidence for the robustness of the proposed method in making the system monostable at an orbit with dominant frequency of any preselected attractor

    Linking host morphology and symbiont performance in octocorals

    Get PDF
    Octocorals represent an important group in reef communities throughout the tropical seas and, like scleractinian corals, they can be found in symbiosis with the dinoflagellate Symbiodinium. However, while there is extensive research on this symbiosis and its benefits in scleractinians, research on octocorals has focused so far mainly on the host without addressing their symbiosis. Here, we characterized and compared the photophysiological features of nine Caribbean octocoral species with different colony morphologies (sea fan, plumes, whips and rods) and related key morphological features with their respective symbiont photobiology. Colony features (branch shape and thickness), as well as micromorphological features (polyp size, density), were found to be significantly correlated with symbiont performance. Sea fans and plumes, with thinner branches and smaller polyps, favor higher metabolic rates, compared to sea rods with thicker branches and larger polyps. Daily integrated photosynthesis to respiration ratios > 1 indicated that the autotrophic contribution to organisms’ energy demands was important in all species, but especially in sea whips. This information represents an important step towards a better understanding of octocoral physiology and its relationship to host morphology, and might also explain to some extent species distribution and susceptibility to environmental stress
    corecore