8 research outputs found

    Radiomics-based aortic flow profile characterization with 4D phase-contrast MRI

    Get PDF
    4D PC MRI of the aorta has become a routinely available examination, and a multitude of single parameters have been suggested for the quantitative assessment of relevant flow features for clinical studies and diagnosis. However, clinically applicable assessment of complex flow patterns is still challenging. We present a concept for applying radiomics for the quantitative characterization of flow patterns in the aorta. To this end, we derive cross-sectional scalar parameter maps related to parameters suggested in literature such as throughflow, flow direction, vorticity, and normalized helicity. Derived radiomics features are selected with regard to their inter-scanner and inter-observer reproducibility, as well as their performance in the differentiation of sex-, age- and disease-related flow properties. The reproducible features were tested on user-selected examples with respect to their suitability for characterizing flow profile types. In future work, such signatures could be applied for quantitative flow assessment in clinical studies or disease phenotyping

    Mixture-model-based segmentation of myocardial delayed enhancement MRI

    No full text
    Myocardial viability assessment is an important task in the diagnosis of coronary heart disease. The measurement of the delayed enhancement effect, the accumulation of contrast agent in defective tissue, has become the gold standard for detecting necrotic tissue with MRI. The purpose of the presented work was to provide a segmentation and quantification method for delayed enhancement MRI. To this end, a suitable mixture model for the myocardial intensity distribution is determined based on expectation maximization and the comparison of the fit accuracy. The subsequent watershed-based segmentation uses the intensity threshold information derived from this model. Preliminary results are derived from an analysis of datasets provided by the STACOM challenge organizers. The segmentation provided reasonable results in all datasets, but the method strongly depends on the underlying myocardium segmentation

    Context-based segmentation and analysis of multi-cycle real-time cardiac MRI

    No full text
    The recent development of a real-time magnetic resonance imaging (MRI) technique with 20 to 30 ms temporal resolution allows for imaging multiple consecutive heart cycles, without the need for breath holding or ECG synchronization. Manual analysis of the resulting image series is no longer feasible because of their length. We propose a region-based algorithm for automatically segmenting the myocardium in consecutive heart cycles based on local context and prior knowledge. The method was evaluated on ten real-time MRI series and compared to segmentations by two observers, with promising results. We show that our approach enables a multicycle analysis of the heart function robust to breathing and arrhythmia

    Real-time myocardium segmentation for the assessment of cardiac function variation

    Get PDF
    Recent developments in MRI enable the acquisition of image sequences with high spatio-temporal resolution. Cardiac motion can be captured without gating and triggering. Image size and contrast relations differ from conventional cardiac MRI cine sequences requiring new adapted analysis methods. We suggest a novel segmentation approach utilizing contrast invariant polar scanning techniques. It has been tested with 20 datasets of arrhythmia patients. The results do not differ significantly more between automatic and manual segmentations than between observers. This indicates that the presented solution could enable clinical applications of real-time MRI for the examination of arrhythmic cardiac motion in the future

    Fast interactive exploration of 4D MRI flow data

    No full text
    1- or 2-directional MRI blood flow mapping sequences are an integral part of standard MR protocols for diagnosis and therapy control in heart diseases. Recent progress in rapid MRI has made it possible to acquire volumetric, 3-directional cine images in reasonable scan time. In addition to flow and velocity measurements relative to arbitrarily oriented image planes, the analysis of 3-dimensional trajectories enables the visualization of flow patterns, local features of flow trajectories or possible paths into specific regions. The anatomical and functional information allows for advanced hemodynamic analysis in different application areas like stroke risk assessment, congenital and acquired heart disease, aneurysms or abdominal collaterals and cranial blood flow. The complexity of the 4D MRI flow datasets and the flow related image analysis tasks makes the development of fast comprehensive data exploration software for advanced flow analysis a challenging task. Most existing tools address only individual aspects of the analysis pipeline such as pre-processing, quantification or visualization, or are difficult to use for clinicians. The goal of the presented work is to provide a software solution that supports the whole image analysis pipeline and enables data exploration with fast intuitive interaction and visualization methods. The implemented methods facilitate the segmentation and inspection of different vascular systems. Arbitrary 2- or 3-dimensional regions for quantitative analysis and particle tracing can be defined interactively. Synchronized views of animated 3D path lines, 2D velocity or flow overlays and flow curves offer a detailed insight into local hemodynamics. The application of the analysis pipeline is shown for 6 cases from clinical practice, illustrating the usefulness for different clinical questions. Initial user tests show that the software is intuitive to learn and even inexperienced users achieve good results within reasonable processing times

    Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) reveals altered blood flow patterns in the ascending aorta of patients with valve-sparing aortic root replacement

    No full text
    Objective The aim of this study was to compare aortic flow patterns in patients after David valve-sparing aortic root replacement with physiologically shaped sinus prostheses or conventional tube grafts in healthy volunteers. Methods Twelve patients with sinus prostheses (55 ± 15 years), 6 patients with tube grafts (58 ± 12 years), 12 age-matched, healthy volunteers (55 ± 6 years), and 6 young, healthy volunteers (25 ± 3 years) were examined with time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI). Primary and secondary helical, as well as vortical flow patterns, were evaluated. Aortic arch anatomy as a flow influencing factor was determined. Results Compared with volunteers, both sinus prostheses and tube grafts developed more than 4 times as many secondary flow patterns in the ascending aorta (sinus prostheses n = 1.6 ± 0.8; tube grafts n = 1.3 ± 0.6; age-matched, healthy volunteers n = 0.3 ± 0.5; young, healthy volunteers n = 0; P ≤ .012) associated with a kinking of the prosthesis itself or at its distal anastomosis. As opposed to round aortic arches in volunteers (n = 16/18), cubic or gothic-shaped arches predominated in patients (n = 16/18, P < .001). In all but 3 volunteers, 2 counter-rotating helices were confirmed in the ascending aorta and were defined as a primary flow pattern. This primary flow pattern did not develop in patients who underwent valve-sparing aortic root replacement. Conclusions In patients after valve-sparing aortic root replacement, there was an increased number of secondary flow patterns in the ascending aorta. This seems to be related to surgically altered aortic geometry with kinking. Because flow alterations are known to affect wall shear stress, there seems to be an increased risk for vessel wall remodeling. Compared with previous 4D Flow MRI studies, primary flow patterns in the ascending aorta in healthy subjects were confirmed to be more complex. This underlines the importance of thorough examination of 4D Flow MRI data
    corecore