92 research outputs found

    Scopoletin 8-Hydroxylase-Mediated Fraxetin Production is Crucial for Iron Mobilization

    Get PDF
    Iron (Fe) is an essential mineral nutrient and an important factor for the composition of natural plant communities. Low Fe availability in aerated soils with neutral or alkaline pH has led to the evolution of elaborate mechanisms that extract Fe from the soil solution. In Arabidopsis (Arabidopsis thaliana), Fe is acquired by an orchestrated strategy that comprises mobilization, chelation, and reduction of Fe3+ prior to its uptake. Here, we show that At3g12900, previously annotated as scopoletin 8-hydroxylase (S8H), participates in Fe acquisition by mediating the biosynthesis of fraxetin (7,8-dihydroxy-6-methoxycoumarin), a coumarin derived from the scopoletin pathway. S8H is highly induced in roots of Fe-deficient plants both at the transcript and protein levels. Mutants defective in the expression of S8H showed increased sensitivity to growth on pH 7.0 media supplemented with an immobile source of Fe and reduced secretion of fraxetin. Transgenic lines overexpressing S8H exhibited an opposite phenotype. Homozygous s8h mutants grown on media with immobilized Fe accumulated significantly more scopolin, the storage form of scopoletin, supporting the designated function of S8H in scopoletin hydroxylation. Fraxetin exhibited Fe-reducing properties in vitro with higher rates being observed at neutral relative to acidic pH. Supplementing the media containing immobile Fe with fraxetin partially rescued the s8h mutants. In natural Arabidopsis accessions differing in their performance on media containing immobilized Fe, the amount of secreted fraxetin was highly correlated with growth and Fe and chlorophyll content, indicating that fraxetin secretion is a decisive factor for calcicole-calcifuge behavior (i.e. the ability/inability to thrive on alkaline soils) of plants

    COSY catalyses trans-cis isomerization and lactonization in the biosynthesis of coumarins

    Get PDF
    Coumarins, also known as 1,2-benzopyrones, comprise a large class of secondary metabolites that are ubiquitously found throughout the plant kingdom. In many plant species, coumarins are particularly important for iron acquisition and plant defence. Here, we show that COUMARIN SYNTHASE (COSY) is a key enzyme in the biosynthesis of coumarins. Arabidopsis thaliana cosy mutants have strongly reduced levels of coumarin and accumulate o-hydroxyphenylpropanoids instead. Accordingly, cosymutants have reduced iron content and show growth defects when grown under conditions in which there is a limited availabil-ity of iron. Recombinant COSY is able to produce umbelliferone, esculetin and scopoletin from their respective o-hydroxycin-namoyl-CoA thioesters by two reaction steps—a trans–cis isomerization followed by a lactonization. This conversion happens partially spontaneously and is catalysed by light, which explains why the need for an enzyme for this conversion has been overlooked. The combined results show that COSY has an essential function in the biosynthesis of coumarins in organs that are shielded from light, such as roots. These findings provide routes to improving coumarin production in crops or by microbial fermentation

    Molecular Characteristics and Antimicrobial Resistance of Group B Streptococcus Strains Causing Invasive Disease in Neonates and Adults

    Get PDF
    We aimed to analyze the molecular characteristics, clonality and antimicrobial resistance profiles of group B streptococcus (GBS) isolates collected in Taiwan from invasive diseases and carriage. Multilocus sequence typing (MLST) was used to assess the genetic diversity of 225 GBS strains from neonates and adults with invasive GBS diseases. 100 GBS strains collected from colonized pregnant women during the same period were compared, and all strains were characterized for one of nine capsule genotypes. We also determined the susceptibilities of all GBS isolates to various antimicrobial agents. The most frequently identified serotypes that caused invasive disease in neonates were III (60.6%) and Ia (17.3%), whereas type VI (32.7%), Ib (19.4%), and V (19.4%) were the most common to cause invasive disease in adults. Serotype VI was the leading type that colonized pregnant women (35.0%). Twenty-six sequence types (STs) were identified, and 90.5% of GBS strains were represented by 6 STs. ST-17 and ST-1 were more prevalent in invasive diseases in neonates and adults, respectively. The majority of serotype III and VI isolates belonged to clonal complex (CC)-17 and CC-1, respectively. ST-17 strains were more likely to cause meningitis and late-onset disease than other strains. In addition, ST-12 and ST-17 GBS strains showed the highest rate of resistance to erythromycin and clindamycin (range: 75.8–100%). In conclusion, CC-17/type III and CC-1/type VI are the most important invasive pathogens in infants and non-pregnant adults in Taiwan, respectively. GBS genotypes vary between different age groups and geographical areas and should be considered during GBS vaccine development

    Kinematic strategies for obstacle-crossing in older adults with mild cognitive impairment

    Get PDF
    IntroductionMild cognitive impairment (MCI) is considered a transitional stage between soundness of mind and dementia, often involving problems with memory, which may lead to abnormal postural control and altered end-point control when dealing with neuromechanical challenges during obstacle-crossing. The study aimed to identify the end-point control and angular kinematics of the pelvis-leg apparatus while crossing obstacles for both leading and trailing limbs.Methods12 patients with MCI (age: 66.7 ± 4.2 y/o; height: 161.3 ± 7.3 cm; mass: 62.0 ± 13.6 kg) and 12 healthy adults (age: 67.7 ± 2.9 y/o; height: 159.3 ± 6.1 cm; mass: 61.2 ± 12.0 kg) each walked and crossed obstacles of three different heights (10, 20, and 30% of leg length). Angular motions of the pelvis and lower limbs and toe-obstacle clearances during leading- and trailing-limb crossings were calculated. Two-way analyses of variance were used to study between-subject (group) and within-subject (obstacle height) effects on the variables. Whenever a height effect was found, a polynomial test was used to determine the trend. A significance level of α = 0.05 was set for all tests.ResultsPatients with MCI significantly increased pelvic anterior tilt, hip abduction, and knee adduction in the swing limb during leading-limb crossing when compared to controls (p < 0.05). During trailing-limb crossing, the MCI group showed significantly decreased pelvic posterior tilt, as well as ankle dorsiflexion in the trailing swing limb (p < 0.05).ConclusionPatients with MCI adopt altered kinematic strategies for successful obstacle-crossing. The patients were able to maintain normal leading and trailing toe-obstacle clearances for all tested obstacle heights with a specific kinematic strategy, namely increased pelvic anterior tilt, swing hip abduction, and knee adduction during leading-limb crossing, and decreased pelvic posterior tilt and swing ankle dorsiflexion during trailing-limb crossing. The current results suggest that regular monitoring of obstacle-crossing kinematics for reduced toe-obstacle clearance or any signs of changes in crossing strategy may be helpful for early detection of compromised obstacle-crossing ability in patients with single-domain amnestic MCI. Further studies using a motor/cognitive dual-task approach on the kinematic strategies adopted by multiple-domain MCI will be needed for a complete picture of the functional adaptations in such a patient group

    The Effects of Niobium and Molybdenum on the Microstructures and Corrosion Properties of CrFeCoNiNbxMoy Alloys

    No full text
    The present work systematically investigated the effects of niobium and molybdenum on the microstructures and corrosion properties of high-entropy CrFeCoNiNbxMox and CrFeCoNiNbxMo1−x alloys, the maximum content of (Nb + Mo) was 20 at.%. All of the alloys were prepared by arc melting under an argon atmosphere. In CrFeCoNiNbxMox alloys (x = 0.15, 0.3 and 0.5), increasing Nb and Mo content would change the microstructure of the alloy from a hypoeutectic structure (x ≤ 0.3) to a hypereutectic one (x = 0.5). All of the CrFeCoNiNbxMo1−x alloys (x = 0.25, 0.5 and 0.75) had a hypereutectic microstructure. Only two phases were analyzed in these alloys, which were face-centered cubic (FCC) and hexagonal close packing (HCP). Increasing the content of Nb and Mo increases the hardness of the alloys by the effects of the solid solution strengthening and formation of the HCP phase. The potentiodynamic polarization curves of these alloys were also measured in 1 M sulfuric acid and 1 M sodium chloride solutions to evaluate the corrosion resistance of these alloys. The CrFeCoNiNb0.3Mo0.3 alloy had the smallest corrosion rate (0.0732 mm/yr) in 1 M deaerated H2SO4 solution, and the CrFeCoNiNb0.15Mo0.15 alloy had the smallest corrosion rate (0.0425 mm/yr) in 1 M deaerated NaCl solution. However, the CrFeCoNiNb0.5Mo0.5 alloy still had the best combination of corrosion resistance and hardness in the present study

    An E3 ubiquitin ligase from Nicotiana benthamiana targets the replicase of Bamboo mosaic virus and restricts its replication

    No full text
    One up-regulated host gene identified previously was found involved in the infection process of Bamboo mosaic virus (BaMV), a single-stranded positive-sense RNA virus. The full length cDNA of this gene was cloned by 5' and 3'-rapid amplification of cDNA ends and found to encode a polypeptide containing a conserved really interesting new gene (RING) domain and a transmembrane domain. The gene might function as an ubiquitin E3 ligase. We designated this protein in Nicotiana benthamiana as ubiquitin E3 ligase containing RING domain 1 (NbUbE3R1). Further characterization by using Tobacco rattle virus-based virus-induced gene silencing (loss-of-function) revealed that increased BaMV accumulation was in both knockdown plants and protoplasts. The gene might have a defensive role in the replication step of BaMV infection. To further inspect the functional role of NbUbE3R1 in BaMV accumulation, NbUbE3R1 was expressed in N. benthamiana plants. The wild-type NbUbE3R1-orange fluorescent protein (NbUbE3R1-OFP), NbUbE3R1/△TM-OFP (removal of the transmembrane domain) and NbUbE3R1/mRING-OFP (mutation at the RING domain, the E2 interaction site) were transiently expressed in plants. NbUbE3R1 and its derivatives all functioned in restricting the accumulation of BaMV. The common feature of these constructs was the intact substrate-interacting domain. Yeast two-hybrid and co-immunoprecipitation experiments used to determine the possible viral-encoded substrate of NbUbE3R1 revealed the replicase of BaMV as the possible substrate. In conclusion, we identified an up-regulated gene, NbUbE3R1 that plays a role in BaMV replication

    PHENOL-CONTAINING MULTIFUNCTIONAL EPOXY CURING AGENTS AND THEIR DERIVATIVES, PREPARATION AND USE

    No full text
    本發明係提供一種如通式(1)之磷系化合物, 其中R1~R4係各自選自由氫、C1~C6烷基、硝基、胺基和鹵原子所組成之群;A係選自由-OH、-OCH3、-OCN及 所組成之群;B與C'係各自選自由-OH、-NH2、-OCN、 、-OR、-NHR及-NR2(其中R為C1~C6烷基)所組成之群;及R5係選自由氫、C1~C6烷基、C3~C6環烷基、苯基及-CF3所組成之群。本發明提供一種製備如式(1)化合物之方法。本發明亦提供一種硬化劑及一種難燃樹脂

    Plasma membrane-associated cation-binding protein 1-like protein negatively regulates intercellular movement of BaMV

    No full text
    To establish a successful infection, a virus needs to replicate and move cell-to-cell efficiently. We investigated whether one of the genes upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) inoculation was involved in regulating virus movement. We revealed the gene to be a plasma membrane-associated cation-binding protein 1-like protein, designated NbPCaP1L. The expression of NbPCaP1L in N. benthamiana was knocked down using Tobacco rattle virus-based gene silencing and consequently the accumulation of BaMV increased significantly to that of control plants. Further analysis indicated no significant difference in the accumulation of BaMV in NbPCaP1L knockdown and control protoplasts, suggesting NbPCaP1L may affect cell-to-cell movement of BaMV. Using a viral vector expressing green fluorescent protein in the knockdown plants, the mean area of viral focus, as determined by fluorescence, was found to be larger in NbPCaP1L knockdown plants. Orange fluorescence protein (OFP)-fused NbPCaP1L, NbPCaP1L-OFP, was expressed in N. benthamiana and reduced the accumulation of BaMV to 46%. To reveal the possible interaction of viral protein with NbPCaP1L, we performed yeast two-hybrid and co-immunoprecipitation experiments. The results indicated that NbPCaP1L interacted with BaMV replicase. The results also suggested that NbPCaP1L could trap the BaMV movement RNP complex via interaction with the viral replicase in the complex and so restricted viral cell-to-cell movement
    corecore