155 research outputs found

    Electromechanically induced absorption in a circuit nano-electromechanical system

    Full text link
    A detailed analysis of electromechanically induced absorption (EMIA) in a circuit nano-electromechanical hybrid system consisting of a superconducting microwave resonator coupled to a nanomechanical beam is presented. By performing two-tone spectroscopy experiments we have studied EMIA as a function of the drive power over a wide range of drive and probe tone detunings. We find good quantitative agreement between experiment and theoretical modeling based on the Hamiltonian formulation of a generic electromechanical system. We show that the absorption of microwave signals in an extremely narrow frequency band (\Delta\omega/2\pi <5 Hz) around the cavity resonance of about 6 GHz can be adjusted over a range of more than 25 dB on varying the drive tone power by a factor of two. Possible applications of this phenomenon include notch filters to cut out extremely narrow frequency bands (< Hz) of a much broader band of the order of MHz defined by the resonance width of the microwave cavity. The amount of absorption as well as the filtered frequency is tunable over the full width of the microwave resonance by adjusting the power and frequency of the drive field. At high drive power we observe parametric microwave amplification with the nanomechanical resonator. Due to the very low loss rate of the nanomechanical beam the drive power range for parametric amplification is narrow, since the beam rapidly starts to perform self-oscillations.Comment: 16 pages, 5 figure

    Determination of effective mechanical properties of a double-layer beam by means of a nano-electromechanical transducer

    Full text link
    We investigate the mechanical properties of a doubly-clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechanical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Young's modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetrostrictive, or in more general multiferroic materials.Comment: 4 pages, 4 figures, 1 supplemental materia

    Solid-state magnetic traps and lattices

    Full text link
    We propose and analyze magnetic traps and lattices for electrons in semiconductors. We provide a general theoretical framework and show that thermally stable traps can be generated by magnetically driving the particle's internal spin transition, akin to optical dipole traps for ultra-cold atoms. Next we discuss in detail periodic arrays of magnetic traps, i.e. magnetic lattices, as a platform for quantum simulation of exotic Hubbard models, with lattice parameters that can be tuned in real time. Our scheme can be readily implemented in state-of-the-art experiments, as we particularize for two specific setups, one based on a superconducting circuit and another one based on surface acoustic waves.Comment: 18 pages, 8 figure

    Coplanar stripline antenna design for optically detected magnetic resonance on semiconductor quantum dots

    Full text link
    We report on the development and testing of a coplanar stripline antenna that is designed for integration in a magneto-photoluminescence experiment to allow coherent control of individual electron spins confined in single self-assembled semiconductor quantum dots. We discuss the design criteria for such a structure which is multi-functional in the sense that it serves not only as microwave delivery but also as electrical top gate and shadow mask for the single quantum dot spectroscopy. We present test measurements on hydrogenated amorphous silicon, demonstrating electrically detected magnetic resonance using the in-plane component of the oscillating magnetic field created by the coplanar stripline antenna necessary due to the particular geometry of the quantum dot spectroscopy. From reference measurements using a commercial electron spin resonance setup in combination with finite element calculations simulating the field distribution in the structure, we obtain an average magnetic field of ~0.2mT at the position where the quantum dots would be integrated into the device. The corresponding pi-pulse time of ~0.3us fully meets the requirements set by the high sensitivity optical spin read-out scheme developed for the quantum dot

    Electrically detected magnetic resonance using radio-frequency reflectometry

    Full text link
    The authors demonstrate readout of electrically detected magnetic resonance at radio frequencies by means of an LCR tank circuit. Applied to a silicon field-effect transistor at milli-kelvin temperatures, this method shows a 25-fold increased signal-to-noise ratio of the conduction band electron spin resonance and a higher operational bandwidth of > 300 kHz compared to the kHz bandwidth of conventional readout techniques. This increase in temporal resolution provides a method for future direct observations of spin dynamics in the electrical device characteristics.Comment: 9 pages, 3 figure

    Observation of extremely slow hole spin relaxation in self-assembled quantum dots

    Full text link
    We report the measurement of extremely slow hole spin relaxation dynamics in small ensembles of self-assembled InGaAs quantum dots. Individual spin orientated holes are optically created in the lowest orbital state of each dot and read out after a defined storage time using spin memory devices. The resulting luminescence signal exhibits a pronounced polarization memory effect that vanishes for long storage times. The hole spin relaxation dynamics are measured as a function of external magnetic field and lattice temperature. We show that hole spin relaxation can occur over remarkably long timescales in strongly confined quantum dots (up to ~270 us), as predicted by recent theory. Our findings are supported by calculations that reproduce both the observed magnetic field and temperature dependencies. The results suggest that hole spin relaxation in strongly confined quantum dots is due to spin orbit mediated phonon scattering between Zeeman levels, in marked contrast to higher dimensional nanostructures where it is limited by valence band mixing.Comment: Published by Physical Review

    Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures

    Full text link
    We present the results of electrically-detected magnetic resonance (EDMR) experiments on silicon with ion-implanted phosphorus nanostructures, performed at 5 K. The devices consist of high-dose implanted metallic leads with a square gap, into which Phosphorus is implanted at a non-metallic dose corresponding to 10^17 cm^-3. By restricting this secondary implant to a 100 nm x 100 nm region, the EDMR signal from less than 100 donors is detected. This technique provides a pathway to the study of single donor spins in semiconductors, which is relevant to a number of proposals for quantum information processing.Comment: 9 pages, 3 figure

    A universal platform for magnetostriction measurements in thin films

    Full text link
    We present a universal nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly-clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetostrictive stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g. by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. We use this method to determine the magnetostriction constants of a 10nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique can be useful in particular for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by e.g. electron beam deposition, thermal evaporation or sputtering

    Phosphorus donors in highly strained silicon

    Full text link
    The hyperfine interaction of phosphorus donors in fully strained Si thin films grown on virtual Si1−x_{1-x}Gex_x substrates with x≀0.3x\leq 0.3 is determined via electrically detected magnetic resonance. For highly strained epilayers, hyperfine interactions as low as 0.8 mT are observed, significantly below the limit predicted by valley repopulation. Within a Green's function approach, density functional theory (DFT) shows that the additional reduction is caused by the volume increase of the unit cell and a local relaxation of the Si ligands of the P donor.Comment: 12 pages, 3 figure
    • 

    corecore