6 research outputs found

    Polyglutamine-expanded ataxin-3: a target engagement marker for spinocerebellar ataxia type 3 in peripheral blood

    Get PDF
    Background: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. Objective: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). Methods: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. Results: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. Conclusions: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder SocietyFunding agencies: This project is supported by the EU Joint Programme—Neurodegenerative Disease Research (JPND) through the following funding organizations under the aegis of JPND: Germany, Federal Ministry of Education and Research (BMBF; funding codes 01ED1602A/B); Netherlands, The Netherlands Organisation for Health Research and Development; Portugal, Foundation for Science and Technology (FCT, grant number JPCOFUND/0001/2015), and Regional Fund for Science and Technology of the Azores; and United Kingdom, Medical Research Council. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 643417. In addition, support has been received by the BIONIC project (number 733050822, which has been made possible by ZonMW as part of “Memorabel,” the research and innovation program for dementia, as part of the Dutch national “Deltaplan for Dementia”: zonmw.nl/dementiaresearch), the CAF[1]E project (the National Institutes of Health, USA, grant number 5R01NS104147-02), and a grant from the Selfridges Group Foundation (NR170024). The BIONIC project is a consortium of Radboudumc, LUMC, ADX Neurosciences, and Rhode Island University

    Intronic enhancers of the human SNCA gene predominantly regulate its expression in brain in vivo.

    Get PDF
    Evidence from patients with Parkinson's disease (PD) and our previously reported α-synuclein (SNCA) transgenic rat model support the idea that increased SNCA protein is a substantial risk factor of PD pathogenesis. However, little is known about the transcription control of the human SNCA gene in the brain in vivo. Here, we identified that the DYT6 gene product THAP1 (THAP domain-containing apoptosis-associated protein 1) and its interaction partner CTCF (CCCTC-binding factor) act as transcription regulators of SNCA. THAP1 controls SNCA intronic enhancers' activities, while CTCF regulates its enhancer-promoter loop formation. The SNCA intronic enhancers present neurodevelopment-dependent activities and form enhancer clusters similar to "super-enhancers" in the brain, in which the PD-associated single-nucleotide polymorphisms are enriched. Deletion of the SNCA intronic enhancer clusters prevents the release of paused RNA polymerase II from its promoter and subsequently reduces its expression drastically in the brain, which may provide new therapeutic approaches to prevent its accumulation and thus related neurodegenerative diseases defined as synucleinopathies

    Differential Temporal Dynamics of Axial and Appendicular Ataxia in SCA3

    Get PDF
    Background: Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. Objectives: To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. Methods: In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow-up assessment after 1 year. Results: An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose-finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow-up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. Conclusion: Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology-specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.Funding agencies: This publication is an outcome of ESMI, an EU Joint Programme — Neurodegenerative Disease Research (JPND) Project (www.jpnd.eu). The project is supported through the following funding organizations under the aegis of JPND: Germany, Federal Ministry of Education and Research (BMBF; funding codes 01ED1602A/B); Netherlands, The Netherlands Organization for Health Research and Development; Portugal, Foundation for Science and Technology and Regional Fund for Science and Technology of the Azores; United Kingdom, Medical Research Council. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 643417. At the United States sites this work was in part supported by the National Ataxia Foundation.Spinocerebellar ataxia type 3Natural historyScale for the Assessment and Rating of AtaxiaDisease progressio

    A standardized protocol for blood and cerebrospinal fluid collection and processing for biomarker research in ataxia

    Get PDF
    The European Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative (ESMI) is a consortium established with the ambition to set up the largest European longitudinal trial-ready cohort of Spinocerebellar Ataxia Type 3/Machado Joseph disease (SCA3/MJD), the most common autosomal dominantly inherited ataxia worldwide. A major focus of ESMI has been the identification of SCA3/MJD biomarkers to enable future interventional studies. As biosample collection and processing variables significantly impact the outcomes of biomarkers studies, biosampling procedures standardization was done previously to study visit initiation. Here, we describe the ESMI consensus biosampling protocol, developed within the scope of ESMI, that ultimately might be translated to other neurodegenerative disorders, particularly ataxias, being the first step to protocol harmonization in the field

    Generation of an induced pluripotent stem cell line from a patient with spinocerebellar ataxia type 3 (SCA3): HIHCNi002-A

    No full text
    A skin biopsy of a patient with spinocerebellar ataxia type 3 (SCA3, also known as Machado-Joseph disease (MJD)) caused by a CAG trinucleotide repeat expansion in the ATXN3 gene, was used to generate an induced pluripotent stem cell line, HIHCNi002-A (iPSC-SCA3). Skin fibroblasts were reprogrammed using episomal plasmids carrying hOCT4, hSOX2, hKLF4, hL-MYC, and hLIN28. The iPSC-SCA3 line exhibits chromosomal stability with conservation of the ATXN3 repeat expansion, expresses pluripotency markers and differentiates into endo-, meso-, and ectodermal cells in vitro

    A standardised protocol for blood and cerebrospinal fluid collection and processing for biomarker research in ataxi

    No full text
    The European Spinocerebellar Ataxia Type 3/Machado-Joseph Disease Initiative (ESMI) is a consortium established with the ambition to set up the largest European longitudinal trial-ready cohort of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease (SCA3/MJD), the most common autosomal dominantly inherited ataxia worldwide. A major focus of ESMI has been the identification of SCA3/MJD biomarkers to enable future interventional studies. As biosample collection and processing variables significantly impact the outcomes of biomarkers studies, biosampling procedures standardisation was done previously to study visit initiation. Here, we describe the ESMI consensus biosampling protocol, developed within the scope of ESMI, that ultimately might be translated to other neurodegenerative disorders, particularly ataxias, being the first step to protocol harmonisation in the fieldFunding. This project was supported by the EU Joint Programme—Neurodegenerative Disease Research (JPND) through the following funding organisations under the aegis of JPND: Portugal, Foundation for Science and Technology (FCT, grant number JPCOFUND/0001/2015)and Regional Fund for Science and Technology of the Azores;Germany, Federal Ministry of Education and Research (BMBF; funding codes 01ED1602A/B); Netherlands, The Netherlands Organisation for Health Research and Development; United Kingdom, Medical Research Council. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 643417. In addition, support has been received by the ERDF through the Regional Operational Program Center 2020, Competitiveness Factors Operational Program (COMPETE 2020, POCI) and National Funds through FCT [BrainHealth2020(CENTRO-01-0145-FEDER-000008), UID/NEU/04539/2019–2021,BD for MJD (CENTRO-01-0145-FEDER-181240), ViraVector (CENTRO-01-0145-FEDER-022095), Spread Silencing (POCI-01-0145-FEDER-029716)], and by the National Ataxia Foundation (USA), the American Portuguese Biomedical Research Fund (APBRF) and the Richard Chin and Lily Lock Machado-Joseph Disease Research Fund.MR (CEECIND/03018/2018), AFF (SFRH/BD/121101/2016), LG(PD/BD/135497/2018) and PS (SFRH/BD/148451/2019) are supported by FCT. PG is supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre UCLH. PG receives also support from the North Thames CRN.PG and HGM, work at University College London Hospitals/University College London, which receives a proportion of funding from the Department of Health’s National Institute for Health Research Biomedical Research Centre’s funding scheme. PG received funding from CureSCA3 in support of HGM work
    corecore