392 research outputs found

    Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels

    Full text link
    The hair cell's mechanoreceptive organelle, the hair bundle, is highly sensitive because its transduction channels open over a very narrow range of displacements. The synchronous gating of transduction channels also underlies the active hair-bundle motility that amplifies and tunes responsiveness. The extent to which the gating of independent transduction channels is coordinated depends on how tightly individual stereocilia are constrained to move as a unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that thermal movements of stereocilia located as far apart as a bundle's opposite edges display high coherence and negligible phase lag. Because the mechanical degrees of freedom of stereocilia are strongly constrained, a force applied anywhere in the hair bundle deflects the structure as a unit. This feature assures the concerted gating of transduction channels that maximizes the sensitivity of mechanoelectrical transduction and enhances the hair bundle's capacity to amplify its inputs.Comment: 24 pages, including 6 figures, published in 200

    Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    Full text link
    The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please see the online version of the article at http://www.nature.com/natur

    P-wave Pairing and Colossal Magnetoresistance in Manganese Oxides

    Full text link
    We point out that the existing experimental data of most manganese oxides show the {\sl frustrated} p-wave superconducting condensation in the ferromagnetic phase in the sense that the superconducting coherence is not long enough to cover the whole system. The superconducting state is similar to the A1A_{1} state in superfluid He-3. The sharp drop of resistivity, the steep jump of specific heat, and the gap opening in tunneling are well understood in terms of the p-wave pairing. In addition, colossal magnetoresistance (CMR) is naturally explained by the superconducting fluctuations with increasing magnetic fields. The finite resistivity may be due to some magnetic inhomogeneities. This study leads to the possibility of room temperature superconductivity.Comment: LaTex, 14 pages, For more information, please send me an e-mail. e-mail adrress : [email protected]

    Dynamic Response of Textile Material under Transverse Impact

    Get PDF
    Textile materials, such as Dyneema and Kevlar, are the major raw materials for state of the art military or personal security armor vests. However, in impact experiments, actual observed penetration speed is much lower than theoretically predicted penetration speed. Each armor vest is composed of high performance yarns which are woven together to form fabrics, which when stacked together form a vest. Understanding penetration behavior of yarns is essential to evaluate the performance of fabric, which will be useful for the design of better vests. The project is composed of three parts: static experiments, dynamic yarn experiments and dynamic fabric experiments. In the static experiments, several types of textile materials will be loaded onto MTS testing machine under slow and constant speed by different projectiles, such as Fragment Simulating Projectile, Hemispherical Nose Projectile and Blade Projectile. Secondly, a powder gun will be used to provide high speed impact conditions. Several yarns will be impacted at high velocities and imaged simultaneously using a high speed camera. Finally, aforementioned experimental conditions will be utilized for fabrics experiments. At this preliminary phase of the investigation, only expected results are being reviewed. In the yarn experiments, impact angle, between impacted region (shear wave propagation region) and impacting region (transvers wave propagation region), is expected to be approximately constant. In the fabric experiments, the goal is to acquire the range of the penetration speeds for different types of textile materials with different number of layers. The acquired data will yield a strong background database for further improvement and adjustment in personal vest design

    Essential nonlinearities in hearing

    Get PDF
    Our hearing organ, the cochlea, evidently poises itself at a Hopf bifurcation to maximize tuning and amplification. We show that in this condition several effects are expected to be generic: compression of the dynamic range, infinitely shrap tuning at zero input, and generation of combination tones. These effects are "essentially" nonlinear in that they become more marked the smaller the forcing: there is no audible sound soft enough not to evoke them. All the well-documented nonlinear aspects of hearing therefore appear to be consequences of the same underlying mechanism.Comment: 4 pages, 3 figure

    Optimizing the vertebrate vestibular semicircular canal: could we balance any better?

    Get PDF
    The fluid-filled semicircular canals (SCCs) of the vestibular system are used by all vertebrates to sense angular rotation. Despite masses spanning seven decades, all mammalian SCCs are nearly the same size. We propose that the SCC represents a sensory organ that evolution has `optimally designed'. Four geometric parameters are used to characterize the SCC, and `building materials' of given physical properties are assumed. Identifying physical and physiological constraints on SCC operation, we find that the most sensitive SCC has dimensions consistent with available data.Comment: 4 pages, 3 figure

    Simultaneous X-ray diffraction and phase-contrast imaging for investigating material deformation mechanisms during high-rate loading

    Get PDF
    Using a high-speed camera and an intensified charge-coupled device (ICCD), a simultaneous X-ray imaging and diffraction technique has been developed for studying dynamic material behaviors during high-rate tensile loading. A Kolsky tension bar has been used to pull samples at 1000 s(−1) and 5000 s(−1) strain-rates for super-elastic equiatomic NiTi and 1100-O series aluminium, respectively. By altering the ICCD gating time, temporal resolutions of 100 ps and 3.37 µs have been achieved in capturing the diffraction patterns of interest, thus equating to single-pulse and 22-pulse X-ray exposure. Furthermore, the sample through-thickness deformation process has been simultaneously imaged via phase-contrast imaging. It is also shown that adequate signal-to-noise ratios are achieved for the detected white-beam diffraction patterns, thereby allowing sufficient information to perform quantitative data analysis diffraction via in-house software (WBXRD_GUI). Of current interest is the ability to evaluate crystal d-spacing, texture evolution and material phase transitions, all of which will be established from experiments performed at the aforementioned elevated strain-rates

    Localization of the Cochlear Amplifier in Living Sensitive Ears

    Get PDF
    BACKGROUND: To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the response peak on the spiral basilar membrane, its location has not been demonstrated experimentally. METHODOLOGY AND PRINCIPAL FINDINGS: Using a sensitive laser interferometer to measure sub-nanometer vibrations at two locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases. CONCLUSIONS AND SIGNIFICANCE: We conclude that the cochlea amplifier resides at a small longitudinal region basal to the response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range

    Nature's Notebook Provides Phenology Observations for NASA Juniper Phenology and Pollen Transport Project

    Get PDF
    Phenology Network has been established to provide national wide observations of vegetation phenology. However, as the Network is still in the early phases of establishment and growth, the density of observers is not yet adequate to sufficiently document the phenology variability over large regions. Hence a combination of satellite data and ground observations can provide optimal information regarding juniperus spp. pollen phenology. MODIS data was to observe Juniperus supp. pollen phenology. The MODIS surface reflectance product provided information on the Juniper supp. cone formation and cone density. Ground based observational records of pollen release timing and quantities were used as verification. Approximately 10, 818 records of juniper phenology for male cone formation Juniperus ashei., J. monosperma, J. scopulorum, and J. pinchotti were reported by Nature's Notebook observers in 2013 These observations provided valuable information for the analysis of satellite images for developing the pollen concentration masks for input into the PREAM (Pollen REgional Atmospheric Model) pollen transport model. The combination of satellite data and ground observations allowed us to improve our confidence in predicting pollen release and spread, thereby improving asthma and allergy alerts

    Simulated cost-effectiveness and long-term clinical outcomes of addiction care and antibiotic therapy strategies for patients with injection drug use-associated infective endocarditis

    Get PDF
    Importance: Emerging evidence supports the use of outpatient parenteral antimicrobial therapy (OPAT) and, in many cases, partial oral antibiotic therapy for the treatment of injection drug use-associated infective endocarditis (IDU-IE); however, long-term outcomes and cost-effectiveness remain unknown. Objective: To compare the added value of inpatient addiction care services and the cost-effectiveness and clinical outcomes of alternative antibiotic treatment strategies for patients with IDU-IE. Design, Setting, and Participants: This decision analytical modeling study used a validated microsimulation model to compare antibiotic treatment strategies for patients with IDU-IE. Model inputs were derived from clinical trials and observational cohort studies. The model included all patients with injection opioid drug use (N = 5 million) in the US who were eligible to receive OPAT either in the home or at a postacute care facility. Costs were annually discounted at 3%. Cost-effectiveness was evaluated from a health care sector perspective over a lifetime starting in 2020. Probabilistic sensitivity, scenario, and threshold analyses were performed to address uncertainty. Interventions: The model simulated 4 treatment strategies: (1) 4 to 6 weeks of inpatient intravenous (IV) antibiotic therapy along with opioid detoxification (usual care strategy), (2) 4 to 6 weeks of inpatient IV antibiotic therapy along with inpatient addiction care services that offered medication for opioid use disorder (usual care/addiction care strategy), (3) 3 weeks of inpatient IV antibiotic therapy along with addiction care services followed by OPAT (OPAT strategy), and (4) 3 weeks of inpatient IV antibiotic therapy along with addiction care services followed by partial oral antibiotic therapy (partial oral antibiotic strategy). Main Outcomes and Measures: Mean percentage of patients completing treatment for IDU-IE, deaths associated with IDU-IE, life expectancy (measured in life-years [LYs]), mean cost per person, and incremental cost-effectiveness ratios (ICERs). Results: All modeled scenarios were initialized with 5 million individuals (mean age, 42 years; range, 18-64 years; 70% male) who had a history of injection opioid drug use. The usual care strategy resulted in 18.63 LYs at a cost of 416 570perperson,with77.6416 570 per person, with 77.6% of hospitalized patients completing treatment. Life expectancy was extended by each alternative strategy. The partial oral antibiotic strategy yielded the highest treatment completion rate (80.3%) compared with the OPAT strategy (78.8%) and the usual care/addiction care strategy (77.6%). The OPAT strategy was the least expensive at 412 150 per person. Compared with the OPAT strategy, the partial oral antibiotic strategy had an ICER of 163 370perLY.IncreasingIDU−IEtreatmentuptakeanddecreasingtreatmentdiscontinuationmadethepartialoralantibioticstrategymorecost−effectivecomparedwiththeOPATstrategy.WhenassumingthatallpatientswithIDU−IEwereeligibletoreceivepartialoralantibiotictherapy,thestrategywascost−savingandresultedin0.0247additionaldiscountedLYs.Whentreatmentdiscontinuationwasdecreasedfrom3.30163 370 per LY. Increasing IDU-IE treatment uptake and decreasing treatment discontinuation made the partial oral antibiotic strategy more cost-effective compared with the OPAT strategy. When assuming that all patients with IDU-IE were eligible to receive partial oral antibiotic therapy, the strategy was cost-saving and resulted in 0.0247 additional discounted LYs. When treatment discontinuation was decreased from 3.30% to 2.65% per week, the partial oral antibiotic strategy was cost-effective compared with OPAT at the 100 000 per LY threshold. Conclusions and Relevance: In this decision analytical modeling study, incorporation of OPAT or partial oral antibiotic approaches along with addiction care services for the treatment of patients with IDU-IE was associated with increases in the number of people completing treatment, decreases in mortality, and savings in cost compared with the usual care strategy of providing inpatient IV antibiotic therapy alone
    • …
    corecore