13,837 research outputs found

    Microwave conductivity of d-wave superconductors with extended impurities

    Full text link
    We investigate the influence of extended scatterers on the finite temperature and finite frequency microwave conductivity of d-wave superconductors. For this purpose we generalize a previous treatment by Durst and Lee, which is based on a nodal approximation of the quasiparticle excitations and scattering processes, and apply it to the analysis of experimental spectra of YBCO-123 and BSCCO-2212. For YBCO, we find that accounting for a slight spatial extension of the strong scattering in-plane defects improves the fit of the low temperature microwave conductivity to experiment. With respect to BSCCO we conclude that it is necessary to include a large concentration of weak-to-intermediate strength extended scatterers, which we attribute to the out-of plane disorder introduced by doping. These findings for BSCCO are consistent with similar analyses of the normal state ARPES spectra and of STM spectra in the superconducting state, where an enhanced forward scattering has been inferred as well.Comment: 10 pages, 11 figure

    SCREENING FOR HEPATITIS C Response from Hepatitis C Trust, BASL, BIA, BVHG, BSG, and BHIVA to article asking whether widespread screening for hepatitis C is justified

    Get PDF
    This is the peer reviewed published version of the following article: Response from Hepatitis C Trust, BASL, BIA, BVHG, BSG, and BHIVA to article asking whether widespread screening for hepatitis C is justified, which has been published in final form at 10.1136/bmj.h998. This article may be used for non-commercial purposes in accordance with BMJ's Terms and Conditions for Self-Archiving.This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/ by/4.0

    Process of designing robust, dependable, safe and secure software for medical devices: Point of care testing device as a case study

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Copyright © 2013 Sivanesan Tulasidas et al. This paper presents a holistic methodology for the design of medical device software, which encompasses of a new way of eliciting requirements, system design process, security design guideline, cloud architecture design, combinatorial testing process and agile project management. The paper uses point of care diagnostics as a case study where the software and hardware must be robust, reliable to provide accurate diagnosis of diseases. As software and software intensive systems are becoming increasingly complex, the impact of failures can lead to significant property damage, or damage to the environment. Within the medical diagnostic device software domain such failures can result in misdiagnosis leading to clinical complications and in some cases death. Software faults can arise due to the interaction among the software, the hardware, third party software and the operating environment. Unanticipated environmental changes and latent coding errors lead to operation faults despite of the fact that usually a significant effort has been expended in the design, verification and validation of the software system. It is becoming increasingly more apparent that one needs to adopt different approaches, which will guarantee that a complex software system meets all safety, security, and reliability requirements, in addition to complying with standards such as IEC 62304. There are many initiatives taken to develop safety and security critical systems, at different development phases and in different contexts, ranging from infrastructure design to device design. Different approaches are implemented to design error free software for safety critical systems. By adopting the strategies and processes presented in this paper one can overcome the challenges in developing error free software for medical devices (or safety critical systems).Brunel Open Access Publishing Fund

    A new method of observing weak extended x-ray sources with RHESSI

    Get PDF
    We present a new method, fan-beam modulation, for observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). This space-based solar x-ray and gamma-ray telescope has much greater sensitivity than previous experiments in the 3-25 keV range, but is normally not well suited to detecting extended sources since their signal is not modulated by RHESSI's rotating grids. When the spacecraft is offpointed from the target source, however, the fan-beam modulation time-modulates the transmission by shadowing resulting from exploiting the finite thickness of the grids. In this paper we detail how the technique is implemented and verify its consistency with sources with clear known signals that have occurred during RHESSI offpointing: microflares and the Crab Nebula. In both cases the results are consistent with previous and complementary measurements. Preliminary work indicates that this new technique allows RHESSI to observe the integrated hard x-ray spectrum of weak extended sources on the quiet Sun.Comment: Publishe

    Fundamental studies of AVC with actuator dynamics

    Get PDF
    IMAC XXXIV: 34th Conference and Exposition on Structural Dynamics of Multiphysical Systems, 25 - 28 January 2016, Orlando, Florida, USAThis is the author accepted manuscript. The final version is available from the publisher.Active vibration control (AVC) of human-induced vibrations in structures with proof-mass actuators has been subject to much research in recent years. This has predominantly focussed on footbridges and floors and there is some evidence that this research is paving the way for commercial installations of AVC where traditional vibration control measures are not appropriate. However, the design of an AVC system is a complex task because of the influence of actuator dynamics, the contributions from higher frequency modes of vibration and the effect of low and high pass filters that are required to make the control algorithm implementable. This puts the AVC design process beyond the abilities of the vast majority of civil design engineers, even at a scheming stage to approximate what sort of reductions could be achieved by such a system. This paper considers a generalised system and investigates what sort of performance can be achieved in theory by a perfect AVC system, then considers the added complexity of actuator dynamics to demonstrate how this degrades the performance from optimal.The authors would like to acknowledge the financial support given by the UK Engineering and Physical Sciences Research Council through a responsive mode grant entitled Active Control of Human-Induced Vibration (Ref: EP/H009825/1) and Leadership Fellowship grant entitled Advanced Technologies for Mitigation of Human-Induced Vibration (Ref: EP/J004081/1)

    Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions

    Get PDF
    By correcting the redshift--dependent distances for peculiar motions through a number of peculiar velocity field models, we recover the true distances of a wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups and the remaining objects as field galaxies. We model the peculiar velocity field using: i) a cluster dipole reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and Mark III catalogs of galaxy peculiar velocities. According to Mark III data the Great Attractor has a smaller influence on local dynamics than previously believed, whereas the Perseus-Pisces and Shapley superclusters acquire a specific dynamical role. Remarkably, the Shapley structure, which is found to account for nearly half the peculiar motion of the Local Group, is placed by Mark III data closer to the zone of avoidance with respect to its optical position. Our multi--attractor model based on Mark III data favors a cosmological density parameter Omega ~ 0.5 (irrespective of a biasing factor of order unity). Differences among distance estimates are less pronounced in the ~ 2000 - 4000 km/s distance range than at larger or smaller distances. In the last regions these differences have a serious impact on the 3D maps of the galaxy distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are available only upon request. Accepted by Ap

    Am I Normal? Informing the public about psychosis through websites and beer mats

    Get PDF
    Well devised information campaigns about psychosis have been shown to reduce stigmatising attitudes and reduce the time psychosis is left untreated. The following paper describes an information campaign initiated by two Early Intervention in Psychosis (EIP) Services

    Mechanism and function of drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor

    Get PDF
    The capa peptide receptor, capaR (CG14575), is a G-protein coupled receptor (GPCR) for the D. melanogaster capa neuropeptides, Drm-capa-1 and -2 (capa-1 and -2). To date, the capa peptide family constitutes the only known nitridergic peptides in insects, so the mechanisms and physiological function of ligand-receptor signalling of this peptide family are of interest. Capa peptide induces calcium signaling via capaR with EC50 values for capa-1 = 3.06 nM and capa-2 = 4.32 nM. capaR undergoes rapid desensitization, with internalization via a b-arrestin-2 mediated mechanism but is rapidly re-sensitized in the absence of capa-1. Drosophila capa peptides have a C-terminal -FPRXamide motif and insect-PRXamide peptides are evolutionarily related to vertebrate peptide neuromedinU (NMU). Potential agonist effects of human NMU-25 and the insect -PRLamides [Drosophila pyrokinins Drm-PK-1 (capa-3), Drm-PK-2 and hugin-gamma [hugg]] against capaR were investigated. NMU-25, but not hugg nor Drm-PK-2, increases intracellular calcium ([Ca2+]i) levels via capaR. In vivo, NMU-25 increases [Ca2+]i and fluid transport by the Drosophila Malpighian (renal) tubule. Ectopic expression of human NMU receptor 2 in tubules of transgenic flies results in increased [Ca2+]i and fluid transport. Finally, anti-porcine NMU-8 staining of larval CNS shows that the most highly immunoreactive cells are capa-producing neurons. These structural and functional data suggest that vertebrate NMU is a putative functional homolog of Drm-capa-1 and -2. capaR is almost exclusively expressed in tubule principal cells; cell-specific targeted capaR RNAi significantly reduces capa-1 stimulated [Ca2+]i and fluid transport. Adult capaR RNAi transgenic flies also display resistance to desiccation. Thus, capaR acts in the key fluid-transporting tissue to regulate responses to desiccation stress in the fly
    corecore