10,709 research outputs found

    A quantum de Finetti theorem in phase space representation

    Full text link
    The quantum versions of de Finetti's theorem derived so far express the convergence of n-partite symmetric states, i.e., states that are invariant under permutations of their n parties, towards probabilistic mixtures of independent and identically distributed (i.i.d.) states. Unfortunately, these theorems only hold in finite-dimensional Hilbert spaces, and their direct generalization to infinite-dimensional Hilbert spaces is known to fail. Here, we address this problem by considering invariance under orthogonal transformations in phase space instead of permutations in state space, which leads to a new type of quantum de Finetti's theorem that is particularly relevant to continuous-variable systems. Specifically, an n-mode bosonic state that is invariant with respect to this continuous symmetry in phase space is proven to converge towards a probabilistic mixture of i.i.d. Gaussian states (actually, n identical thermal states).Comment: 5 page

    Ten Years of Solar Change as Monitored by SBUV and SBUV/2

    Get PDF
    Observations of the Sun by the Solar Backscatter Ultraviolet (SBUV) instrument aboard Nimbus 7 and the SBUV/2 instrument aboard NOAA-9 reveal variations in the solar irradiance from 1978, to 1988. The maximum to minimum solar change estimated from the Heath and Schlesinger Mg index and wavelength scaling factors is about 4 percent from 210 to 260 nm and 8 percent for 180 to 210 nm; direct measurements of the solar change give values of 1 to 3 percent and 5 to 7 percent, respectively, for the same wavelength range. Solar irradiances were high from the start of observations, late in 1978, until 1983, declined until early 1985, remained approximately constant until mid-1987, and then began to rise. Peak-to-peak 27-day rotational modulation amplitudes were as large as 6 percent at solar maximum and 1 to 2 percent at solar minimum. During occasional intervals of the 1979 to 1983 maximum and again during 1988, the dominant rotational modulation period was 13.5 days. Measurements near 200 to 205 nm show the same rotational modulation behavior but cannot be used to track long-term changes in the Sun because of uncertainties in the characterization of long-term instrument sensitivity changes

    A status report on the analysis of the NOAA-9 SBUV/2 sweep mode solar irradiance data

    Get PDF
    Monitoring of the near ultraviolet (UV) solar irradiance is important because the solar UV radiation is the primary energy source in the upper atmosphere. The solar irradiance at wavelengths shortward of roughly 300 nm heats the stratosphere via photodissociation of ozone in the Hartley bands. Shortward of 242 nm the solar UV flux photodissociates O2, which is then available for ozone formation. Upper stratosphere ozone variations coincident with UV solar rotational modulation have been previously reported (Gille et al., 1984). Clearly, short and long term solar irradiance observations are necessary to separate solar-forced ozone variations from anthropogenic changes. The SBUV/2 instrument onboard the NOAA-9 spacecraft has made daily measurements of the solar spectral irradiance at approximately 0.15 nm intervals in the wavelength region 160-405 nm at 1 nm resolution since March 1985. These data are not needed to determine the terrestrial ozone overburden or altitude profile, and hence are not utilized in the NOAA Operational Ozone Product System (OOPS). Therefore, assisted by the ST System Corporation, NASA has developed a scientific software system to process the solar sweep mode data from the NOAA-9 instrument. This software will also be used to process the sweep mode solar irradiance data from the NOAA-11 and later SBUV/2 instruments. An overview of the software system and a brief discussion of analysis findings to date are provided. Several outstanding concerns/problems are also presented

    Nearby Optical Galaxies: Selection of the Sample and Identification of Groups

    Get PDF
    In this paper we describe the Nearby Optical Galaxy (NOG) sample, which is a complete, distance-limited (czcz\leq6000 km/s) and magnitude-limited (B\leq14) sample of \sim7000 optical galaxies. The sample covers 2/3 (8.27 sr) of the sky (b>20|b|>20^{\circ}) and appears to have a good completeness in redshift (98%). We select the sample on the basis of homogenized corrected total blue magnitudes in order to minimize systematic effects in galaxy sampling. We identify the groups in this sample by means of both the hierarchical and the percolation {\it friends of friends} methods. The resulting catalogs of loose groups appear to be similar and are among the largest catalogs of groups presently available. Most of the NOG galaxies (\sim60%) are found to be members of galaxy pairs (\sim580 pairs for a total of \sim15% of objects) or groups with at least three members (\sim500 groups for a total of \sim45% of objects). About 40% of galaxies are left ungrouped (field galaxies). We illustrate the main features of the NOG galaxy distribution. Compared to previous optical and IRAS galaxy samples, the NOG provides a denser sampling of the galaxy distribution in the nearby universe. Given its large sky coverage, the identification of groups, and its high-density sampling, the NOG is suited for the analysis of the galaxy density field of the nearby universe, especially on small scales.Comment: 47 pages including 6 figures. Accepted for publication in Ap

    Mitoxantrone is superior to doxorubicin in a multiagent weekly regimen for patients older than 60 with high-grade lymphoma: results of a BNLI randomized trial of PAdriaCEBO versus PMitCEBO

    Get PDF
    A prospective, multicenter, randomized trial was undertaken to compare the efficacy and toxicity of adriamycin with mitoxantrone within a 6-drug combination chemotherapy regimen for elderly patients (older than 60 years) with high-grade non-Hodgkin lymphoma (HGL) given for a minimum of 8 weeks. A total of 516 previously untreated patients aged older than 60 years were randomized to receive 1 of 2 anthracycline-containing regimens: adriamycin, 35 mg/m2 intravenously (IV) on day 1 (n = 259), or mitoxantrone, 7 mg/m2 IV on day 1 (n = 257); with prednisolone, 50 mg orally on days 1 to 14; cyclophosphamide, 300 mg/m2 IV on day 1; etoposide, 150 mg/m2 IV on day 1; vincristine, 1.4 mg/m2 IV on day 8; and bleomycin, 10 mg/m2 IV on day 8. Each 2-week cycle was administered for a minimum of 8 weeks in the absence of progression. Forty-three patients were ineligible for analysis. The overall and complete remission rates were 78% and 60% for patients receiving PMitCEBO and 69% and 52% for patients receiving PAdriaCEBO (P = .05, P = .12, respectively). Overall survival was significantly better with PMitCEBO than PAdriaCEBO (P = .0067). However, relapse-free survival was not significantly different (P = .16). At 4 years, 28% of PAdriaCEBO patients and 50% of PMitCEBO patients were alive (P = .0001). Ann Arbor stage III/IV, World Health Organization performance status 2-4, and elevated lactate dehydrogenase negatively influenced overall survival from diagnosis. In conclusion, the PMitCEBO 8-week combination chemotherapy regimen offers high response rates, durable remissions, and acceptable toxicity in elderly patients with HGL

    Developing mathematical thinking in the primary classroom: liberating students and teachers as learners of mathematics

    Get PDF
    This paper reports on a research study conducted with a group of practising primary school teachers (n = 24) in North East Scotland during 2011–2012. The teachers were all participants in a newly developed Masters course that had been designed with the aim of promoting the development of mathematical thinking in the primary classroom as part of project supported by the Scottish Government. The paper presents the background for this initiative within the context of the Scottish Curriculum for Excellence reform. Particular attention is given to the epistemological positioning of the researchers as this influenced both the curriculum design process and also the theoretical framing of the research study which are both described. The project was set up within a design research framework, which aimed to promote classroom-based action research on the part of participants through the course and also research by the university researchers into the process of curriculum development. The research questions focused on the teachers’ confidence, competence, attitudes and beliefs in relation to mathematics and their expectations and experiences of the impact on pupil learning arising from this course. Empirical data were drawn from pre- and post-course surveys, interviews and observations of the discussion forums in the online environment. Findings from this study highlight the way the course had a transformational and emancipatory impact on these teachers. They also highlight ways in which the ‘framing’ of particular aspects of the curriculum had an oppressive impact on learners in the ways that suppressed creativity and limited the exercise of learner autonomy. Furthermore, they highlight the ways in which a number of these teachers had experienced mathematics as a school subject in very negative ways, involving high levels of ‘symbolic violence’ and of being ‘labelled’

    Design of an Automated Ultrasonic Scanning System for In-Situ Composite Cure Monitoring and Defect Detection

    Get PDF
    The preliminary design and development of an automated ultrasonic scanning system for in-situ composite cure monitoring and defect detection in the high temperature environment of an oven was completed. This preliminary design is a stepping stone to deployment in the high temperature and high pressure environment of an autoclave, the primary cure method of aerospace grade thermoset composites. Cure monitoring with real-time defect detection during the process could determine when defects form and how they move. In addition, real-time defect detection during cure could assist validating physics-based process models for predicting defects at all stages of the cure cycle. A physics-based process model for predicting porosity and fiber waviness originating during cure is currently under development by the NASA Advanced Composites Project (ACP). For the design, an ultrasonic contact scanner is enclosed in an insulating box that is placed inside an oven during cure. Throughout the cure cycle, the box is nitrogen-cooled to approximately room temperature to maintain a standard operating environment for the scanner. The composite part is mounted on the outside of the box in a vacuum bag on the build/tool plate. The build plate is attached to the bottom surface of the box. The scanner inspects the composite panel through the build plate, tracking the movement of defects introduced during layup and searching for new defects that may form during cure. The focus of this paper is the evaluation and selection of the build plate material and thickness. The selection was based on the required operating temperature of the scanner, the cure temperature of the composite material, thermal conductivity models of the candidate build plates, and a series of ultrasonic attenuation tests. This analysis led to the determination that a 63.5 mm thick build plate of borosilicate glass would be utilized for the system. The borosilicate glass plate was selected as the build plate material due to the low ultrasonic attenuation it demonstrated, its ability to efficiently insulate the scanner while supporting an elevated temperature on the part side of the plate, and the availability of a 63.5 mm thick plate without the need for lamination

    Gene-history correlation and population structure

    Full text link
    Correlation of gene histories in the human genome determines the patterns of genetic variation (haplotype structure) and is crucial to understanding genetic factors in common diseases. We derive closed analytical expressions for the correlation of gene histories in established demographic models for genetic evolution and show how to extend the analysis to more realistic (but more complicated) models of demographic structure. We identify two contributions to the correlation of gene histories in divergent populations: linkage disequilibrium, and differences in the demographic history of individuals in the sample. These two factors contribute to correlations at different length scales: the former at small, and the latter at large scales. We show that recent mixing events in divergent populations limit the range of correlations and compare our findings to empirical results on the correlation of gene histories in the human genome.Comment: Revised and extended version: 26 pages, 5 figures, 1 tabl

    Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions

    Get PDF
    By correcting the redshift--dependent distances for peculiar motions through a number of peculiar velocity field models, we recover the true distances of a wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups and the remaining objects as field galaxies. We model the peculiar velocity field using: i) a cluster dipole reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and Mark III catalogs of galaxy peculiar velocities. According to Mark III data the Great Attractor has a smaller influence on local dynamics than previously believed, whereas the Perseus-Pisces and Shapley superclusters acquire a specific dynamical role. Remarkably, the Shapley structure, which is found to account for nearly half the peculiar motion of the Local Group, is placed by Mark III data closer to the zone of avoidance with respect to its optical position. Our multi--attractor model based on Mark III data favors a cosmological density parameter Omega ~ 0.5 (irrespective of a biasing factor of order unity). Differences among distance estimates are less pronounced in the ~ 2000 - 4000 km/s distance range than at larger or smaller distances. In the last regions these differences have a serious impact on the 3D maps of the galaxy distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are available only upon request. Accepted by Ap
    corecore