123 research outputs found

    Measurements of thermal properties of icy Mars regolith analogs

    Get PDF
    In a series of laboratory experiments, we measure thermal diffusivity, thermal conductivity, and heat capacity of icy regolith created by vapor deposition of water below its triple point and in a low pressure atmosphere. We find that an ice-regolith mixture prepared in this manner, which may be common on Mars, and potentially also present on the Moon, Mercury, comets and other bodies, has a thermal conductivity that increases approximately linearly with ice content. This trend differs substantially from thermal property models based of preferential formation of ice at grain contacts previously applied to both terrestrial and non-terrestrial subsurface ice. We describe the observed microphysical structure of ice responsible for these thermal properties, which displaces interstitial gases, traps bubbles, exhibits anisotropic growth, and bridges non-neighboring grains. We also consider the applicability of these measurements to subsurface ice on Mars and other solar system bodies

    Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Get PDF
    As shown by the Phoenix Mars Lander's Thermal and Electrical Conductivity Probe (TECP), contact measurements of thermal conductivity and diffusivity (using a modified flux-plate or line-source heat-pulse method) are constrained by a number of factors. Robotic resources must be used to place the probe, making them unavailable for other operations for the duration of the measurement. The range of placement is also limited by mobility, particularly in the case of a lander. Placement is also subject to irregularities in contact quality, resulting in non-repeatable heat transfer to the material under test. Most important from a scientific perspective, the varieties of materials which can be measured are limited to unconsolidated or weakly-cohesive regolith materials, rocks, and ices being too hard for nominal insertion strengths. Accurately measuring thermal properties in the laboratory requires significant experimental finesse, involving sample preparation, controlled and repeatable procedures, and, practically, instrumentation much more voluminous than the sample being tested (heater plates, insulation, temperature sensors). Remote measurements (infrared images from orbiting spacecraft) can reveal composite properties like thermal inertia, but suffer both from a large footprint (low spatial resolution) and convolution of the thermal properties of a potentially layered medium. In situ measurement techniques (the Phoenix TECP is the only robotic measurement of thermal properties to date) suffer from problems of placement range, placement quality, occupation of robotic resources, and the ability to only measure materials of low mechanical strength. A spacecraft needs the ability to perform a non-contact thermal properties measurement in situ. Essential components include low power consumption, leveraging of existing or highly-developed flight technologies, and mechanical simplicity. This new in situ method, by virtue of its being non-contact, bypasses all of these problems. The use of photons to both excite and measure the thermal response of any surface material to a high resolution (estimated footprint = 10 square centimeters) is a generational leap in physical properties measurements. The proposed method consists of spot-heating the surface of a material with a low (less than 1 W) power laser. This produces a moderate (5-10 K) temperature increase in the material

    Water vapor diffusion in Mars subsurface environments

    Get PDF
    The diffusion coefficient of water vapor in unconsolidated porous media is measured for various soil simulants at Mars-like pressures and subzero temperatures. An experimental chamber which simultaneously reproduces a low-pressure, low-temperature, and low-humidity environment is used to monitor water flux from an ice source through a porous diffusion barrier. Experiments are performed on four types of simulants: 40–70 µm glass beads, sintered glass filter disks, 1–3 µm dust (both loose and packed), and JSC Mars–1. A theoretical framework is presented that applies to environments that are not necessarily isothermal or isobaric. For most of our samples, we find diffusion coefficients in the range of 2.8 to 5.4 cm^2 s^-1 at 600 Pascal and 260 K. This range becomes 1.9–4.7 cm^2 s^-1 when extrapolated to a Mars-like temperature of 200 K. Our preferred value for JSC Mars–1 at 600 Pa and 200 K is 3.7 ± 0.5 cm^2 s^-1. The tortuosities of the glass beads is about 1.8. Packed dust displays a lower mean diffusion coefficient of 0.38 ± 0.26 cm^2 s^-1, which can be attributed to transition to the Knudsen regime where molecular collisions with the pore walls dominate. Values for the diffusion coefficient and the variation of the diffusion coefficient with pressure are well matched by existing models. The survival of shallow subsurface ice on Mars and the providence of diffusion barriers are considered in light of these measurements

    Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration

    No full text
    International audienceRecent in situ measurements at tropical tropopause temperatures as low as 187 K indicate supersaturations with respect to ice exceeding 100% with little or no ice present. In contrast, models used to simulate cloud formation near the tropopause assume a supersaturation threshold for ice nucleation of about 65% based on laboratory measurements of sulfate aerosol freezing. The high supersaturations reported here, along with cloud simulations assuming a plausible range of temperature histories in the sampled air mass, indicate that the vast majority of aerosols in the air sampled on this flight must have had supersaturation thresholds for ice nucleation exceeding 100% (i.e. near liquid water saturation at these temperatures). Possible explanations for this high threshold are that (1) the expressions used for calculating vapor pressure over supercooled water at low temperatures give values at least 20% too low, (2) most of the available aerosols had a composition that makes them much more resistant to ice nucleation than aerosols used in laboratory experiments, and (3) organic films on the aerosol surfaces reduce their accommodation coefficient for uptake of water, resulting in aerosols with more concentrated solutions when moderate-rapid cooling occurs and correspondingly inhibited homogeneous freezing. Simulations of in situ cloud formation in the tropical tropopause layer (TTL) throughout the tropics indicate that if these decreased accommodation coefficients and resulting high thresholds for ice nucleation prevailed throughout the tropics, then the calculated occurrence frequency and areal coverage of TTL cirrus would be significantly suppressed. However, the simulations also show that even if in situ TTL cirrus form only over a very small fraction of the tropics in the western Pacific, enough air passes through them due to rapid horizontal transport such that they can still effectively freeze-dry air entering the stratosphere

    Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration

    No full text
    International audienceRecent in situ measurements at tropical tropopause temperatures as low as 187 K indicate supersaturations with respect to ice exceeding 100% with little or no ice present. In contrast, models used to simulate cloud formation near the tropopause assume a supersaturation threshold for ice nucleation of about 65% based on laboratory measurements of aqueous aerosol freezing. The high supersaturations reported here, along with cloud simulations assuming a plausible range of temperature histories in the sampled air mass, indicate that the vast majority of aerosols in the air sampled on this flight must have had supersaturation thresholds for ice nucleation exceeding 100% (i.e. near liquid water saturation at these temperatures). Possible explanations for this high threshold are that (1) the expressions used for calculating vapor pressure over supercooled water at low temperatures give values are at least 20% too low, (2) organic films on the aerosol surfaces reduce their accommodation coefficient for uptake of water, resulting in aerosols with more concentrated solutions when moderate-rapid cooling occurs and correspondingly inhibited homogeneous freezing, and (3) if surface freezing dominates, organic coatings may increase the surface energy of the ice embryo/vapor interface resulting in suppressed ice nucleation. Simulations of in situ cloud formation in the tropical tropopause layer (TTL) throughout the tropics indicate that if decreased accommodation coefficients and resulting high thresholds for ice nucleation prevailed throughout the tropics, then the calculated occurrence frequency and areal coverage of TTL cirrus would be significantly suppressed. However, the simulations also show that even if in situ TTL cirrus form only over a very small fraction of the tropics in the western Pacific, enough air passes through them due to rapid horizontal transport such that they can still effectively freeze-dry air entering the stratosphere. The TTL cirrus simulations show that even if very large supersaturations are required for ice nucleation, these large supersaturations should occur very rarely

    Penetration and performance testing of the HP³ Mole for the InSight Mars mission

    Get PDF
    During the development and the qualification of the Heat Flow Physical Properties Package (HP³) instrument (developed by the German Aerospace Center), which is part of the NASA Mars mission InSight, its self-propelling subsurface probe, the HP³ Mole was used in several penetration tests. Here, the performance of the Mole to reach the target depth, to avoid or overcome obstacles on its path, and its directional stability in the subsurface is elaborated. The different test beds and set ups are described and the results are presented. The deep penetration tests (DPT), with the purpose to reach the target depth, are the most important performance tests and therefore the results are investigated in more detail in section 2. Full functional tests (FFT), which showed the performance and degradation of the mechanism inside the Mole, are presented in section 3. Additional penetration and life cycle tests are described in section 4. The testing has demonstrated that the HP³ Mole meets all of its penetration requirements with margin

    Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle

    Get PDF
    Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought

    Mars Regolith Properties as Constrained from HP3 Mole Operations and Thermal Measurements

    Get PDF
    The Heat Flow and Physical Properties Package HP3 onboard the Nasa InSight mission has been on the surface of Mars for more than one Earth year. The instrument's primary goal is to measure Mars' surface heat flow through measuring the geothermal gradient and the thermal condunctivity at depths between 3 and 5m. To get to depth, the package includes a penetrator nicknamed the "Mole" equipped with sensors to precisely measure the thermal conductivity. The Mole tows a tether with printed temperature sensors; a device to measure the length of the tether towed and a tiltmeter will help to track the path of the Mole and the tether. Progress of the Mole has been stymied by difficulties of digging into the regolith. The Mole functions as a mechanical diode with an internal hammer mechanism that drives it forward. Recoil is balanced mostly by internal masses but a remaining 3 to 5N has to be absorbed by hull friction. The Mole was designed to work in cohesionless sand but at the InSight landing a cohesive duricrust of at least 7cm thickness but possibly 20cm thick was found. Upon initial penetration to 35cm depth, the Mole punched a hole about 6cm wide and 7cm deep into the duricrust, leaving more than a fourth of its length without hull friction. It is widely agreed that the lack of friction is the reason for the failure to penetrate further. The HP3 team has since used the robotic arm with its scoop to pin the Mole to the wall of the hole and helped it penetrate further to almost 40cm. The initial penetration rate of the Mole has been used to estimate a penetration resistance of 300kPa. Attempts to crush the duricrust a few cm away from the pit have been unsuccessful from which a lower bound to the compressive strength of 350kPa is estimated. Analysis of the slope of the steep walls of the hole gave a lower bound to cohesion of 10kPa. As for thermal properties, a measurement of the thermal conductivity of the regolith with the Mole thermal sensors resulted in 0.045 Wm-1K-1. The value is considerably uncertain because part of the Mole having contact to air. The HP³ radiometer has been monitoring the surface temperature next to the lander and a thermal model fitted to the data give a regolith thermal inertia of 189 ± 10 J m-2 K-1 s-1/2. With best estimates of heat capacity and density, this corresponds to a thermal conductivity of 0.045 Wm-1K-1, consistent with the above measurement using the Mole. The data can be fitted well with a homogeneous soil model, but observations of Phobos eclipses in March 2019 indicate that there possibly is a thin top layer of lower thermal conductivity. A model with a top 5 mm layer of 0.02 Wm-1K-1 above a half-space of 0.05 Wm-1K-1 matches the amplitudes of both the diurnal and eclipse temperature curves. Another set of eclipses will occur in April 2020

    The InSight-HP³ mole on Mars: Lessons learned from attempts to penetrate to depth in the Martian soil

    Get PDF
    The NASA InSight lander mission to Mars payload includes the Heat Flow and Physical Properties Package HP3 to measure the surface heat flow. The package was designed to use a small penetrator - nicknamed the mole - to implement a vertical string of temperature sensors in the soil to a depth of 5 m. The mole itself is equipped with sensors to measure a thermal conductivity-depth profile as it proceeds to depth. The heat flow is calculated from the product of the temperature gradient and the thermal conductivity. To avoid the perturbation caused by annual surface temperature variations, the measurements need to be taken at a depth between 3 m and 5 m. The mole is designed to penetrate cohesionless soil similar in rheology to quartz sand which is expected to provide a good analogue material for Martian sand. The sand would provide friction to the buried mole hull to balance the remaining recoil of the mole hammer mechanism that drives the mole forward. Unfortunately, the mole did not penetrate more than 40 cm, roughly a mole length. The failure to penetrate deeper is largely due to a cohesive duricrust of a few tens of centimeter thickness that failed to provide the required friction. Although a suppressor mass and spring as part of the mole hammer mechanism absorb much of the recoil, the available mass did not allow designing a system that fully eliminated the recoil. The mole penetrated to 40 cm depth benefiting from friction provided by springs in the support structure from which it was deployed and from friction and direct support provided by the InSight Instrument Deployment Arm. In addition, the Martian soil provided unexpected levels of penetration resistance that would have motivated designing a more powerful mole. The low weight of the mole support structure was not sufficient to guide the mole penetrating vertically. Roughly doubling the overall mass of the instrument package would have allowed to design a more robust system with little or no recoil, more energy of the mole hammer mechanism and a more massive support structure. In addition, to cope with duricrust a mechanism to support the mole to a depth of about two mole lengths should be considered
    • …
    corecore