109 research outputs found

    A study of hydromagnetic waves

    Get PDF
    Call number: LD2668 .T4 1960 H6

    A Post-Amadori Inhibitor Pyridoxamine Also Inhibits Chemical Modification of Proteins by Scavenging Carbonyl Intermediates of Carbohydrate and Lipid Degradation

    Get PDF
    Reactive carbonyl compounds are formed during autoxidation of carbohydrates and peroxidation of lipids. These compounds are intermediates in the formation of advanced glycation end products (AGE) and advanced lipoxidation end products (ALE) in tissue proteins during aging and in chronic disease. We studied the reaction of carbonyl compounds glyoxal (GO) and glycolaldehyde (GLA) with pyridoxamine (PM), a potent post-Amadori inhibitor of AGE formation in vitro and of development of renal and retinal pathology in diabetic animals. PM reacted rapidly with GO and GLA in neutral, aqueous buffer, forming a Schiff base intermediate that cyclized to a hemiaminal adduct by intramolecular reaction with the phenolic hydroxyl group of PM. This bicyclic intermediate dimerized to form a five-ring compound with a central piperazine ring, which was characterized by electrospray ionization-liquid chromatography/mass spectrometry, NMR, and x-ray crystallography. PM also inhibited the modification of lysine residues and loss of enzymatic activity of RNase in the presence of GO and GLA and inhibited formation of the AGE/ALE N(epsilon)-(carboxymethyl)lysine during reaction of GO and GLA with bovine serum albumin. Our data suggest that the AGE/ALE inhibitory activity and the therapeutic effects of PM observed in diabetic animal models depend, at least in part, on its ability to trap reactive carbonyl intermediates in AGE/ALE formation, thereby inhibiting the chemical modification of tissue proteins

    Collagen IV Assembly: Production of a Recombinant Construct for Mechanistic Studies

    Full text link
    Basement membranes, specialized extracellular matrix, provide mechanical support for epithelial cells and shape cell behavior by interacting with cell receptors. Collagen IV, the predominant component of basement membrane, comprises six genetically distinct alpha chains (α1 to α6) that assemble to form protomers, which associate to form hexamers, in the scaffold. Non-assembly due to mutations within alpha chains give rise to kidney diseases. Yet, the mechanism of assembly is poorly understood. Preliminary data in our lab indicated that amino acid 78 of collagen IV α2 NC1 (non-collagenous) domains may play a role in a chloride-dependent switch that supports hexamer formation. We hypothesized that this particular amino acid is critical for hexamer assembly. To this end, we sought to generate a mutated construct of collagen IV α2 truncated protomer, TP(D78A). We anticipate this construct will be a critical tool in understanding the mechanism of collagen IV α2 domain assembly. Using molecular biology techniques, we introduced a point mutation in TP(D78A) and identified optimal conditions for protein expression. We generated PCR products of expected molecular weight and sent them for sequence verification. We then investigated cell lines for optimum protein expression to later look for hexamer formation. We found that COS-7 cells as compared to HEK-293 cells were better for expression of our wild-type construct WT(TPD78). In conclusion, we produced candidate TP(D78A) constructs for sequencing and determined COS-7 cells were better for expression of WT(TP(D78).These results are significant in producing a tool to investigate the mechanism of collagen IV α2 NC1 domain assembly

    Who\u27s accessing emergency food services?

    Get PDF
    Introduction: Last year, Chittenden Emergency Food Shelf provided 1,260,517 pounds of food to over 11,000 people each month via groceries, hot meals and home delivery, supplying an average of almost 40% of food for families. CEFS seeks to improve their services and offerings by better understanding the demographics, food preference, and needs of the clients they serve. Our goal was to collect demographic and utilization data to identify areas where CEFS could enhance services and improve client access to healthful food.https://scholarworks.uvm.edu/comphp_gallery/1208/thumbnail.jp

    Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: A potential therapy for primary hyperoxaluria

    Get PDF
    Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: A potential therapy for primary hyperoxaluria.BackgroundPrimary hyperoxaluria is a rare genetic disorder of glyoxylate metabolism that results in overproduction of oxalate. The disease is characterized by severe calcium oxalate nephrolithiasis and nephrocalcinosis, resulting in end-stage renal disease (ESRD) early in life. Most patients eventually require dialysis and kidney transplantation, usually in combination with the replacement of the liver. Reduction of urinary oxalate levels can efficiently decrease calcium oxalate depositions; yet, no treatment is available that targets oxalate biosynthesis. In previous in vitro studies, we demonstrated that pyridoxamine can trap reactive carbonyl compounds, including intermediates of oxalate biosynthesis.MethodsThe effect of PM on urinary oxalate excretion and kidney crystal formation was determined using the ethylene glycol rat model of hyperoxaluria. Animals were given 0.75% to 0.8% ethylene glycol in drinking water to establish and maintain hyperoxaluria. After 2 weeks, pyridoxamine treatment (180mg/day/kg body weight) started and continued for an additional 2 weeks. Urinary creatinine, glycolate, oxalate, and calcium were measured along with the microscopic analysis of kidney tissues for the presence of calcium oxalate crystals.ResultsPyridoxamine treatment resulted in significantly lower (by ∼50%) levels of urinary glycolate and oxalate excretion compared to untreated hyperoxaluric animals. This was accompanied by a significant reduction in calcium oxalate crystal formation in papillary and medullary areas of the kidney.ConclusionThese results, coupled with favorable toxicity profiles of pyridoxamine in humans, show promise for therapeutic use of pyridoxamine in primary hyperoxaluria and other kidney stone diseases

    Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells

    Get PDF
    Susceptibility and protection against human autoimmune diseases, including type I diabetes, multiple sclerosis, and Goodpasture disease, is associated with particular human leukocyte antigen (HLA) alleles. However, the mechanisms underpinning such HLA-mediated effects on self-tolerance remain unclear. Here we investigate the molecular mechanism of Goodpasture disease, an HLA-linked autoimmune renal disorder characterized by an immunodominant CD4+ T-cell self-epitope derived from the α3 chain of type IV collagen (α3135–145)1,2,3,4. While HLA-DR15 confers a markedly increased disease risk, the protective HLA-DR1 allele is dominantly protective in trans with HLA-DR15 (ref. 2). We show that autoreactive α3135–145-specific T cells expand in patients with Goodpasture disease and, in α3135–145-immunized HLA-DR15 transgenic mice, α3135–145-specific T cells infiltrate the kidney and mice develop Goodpasture disease. HLA-DR15 and HLA-DR1 exhibit distinct peptide repertoires and binding preferences and present the α3135–145 epitope in different binding registers. HLA-DR15-α3135–145 tetramer+ T cells in HLA-DR15 transgenic mice exhibit a conventional T-cell phenotype (Tconv) that secretes pro-inflammatory cytokines. In contrast, HLA-DR1-α3135–145 tetramer+ T cells in HLA-DR1 and HLA-DR15/DR1 transgenic mice are predominantly CD4+Foxp3+ regulatory T cells (Treg cells) expressing tolerogenic cytokines. HLA-DR1-induced Treg cells confer resistance to disease in HLA-DR15/DR1 transgenic mice. HLA-DR15+ and HLA-DR1+ healthy human donors display altered α3135–145-specific T-cell antigen receptor usage, HLA-DR15-α3135–145 tetramer+ Foxp3− Tconv and HLA-DR1-α3135–145 tetramer+ Foxp3+CD25hiCD127lo Treg dominant phenotypes. Moreover, patients with Goodpasture disease display a clonally expanded α3135–145-specific CD4+ T-cell repertoire. Accordingly, we provide a mechanistic basis for the dominantly protective effect of HLA in autoimmune disease, whereby HLA polymorphism shapes the relative abundance of self-epitope specific Treg cells that leads to protection or causation of autoimmunity
    • …
    corecore