23,705 research outputs found
Cosmological Parameters from the Comparison of the 2MASS Gravity Field with Peculiar Velocity Surveys
We compare the peculiar velocity field within 65 Mpc predicted from
2MASS photometry and public redshift data to three independent peculiar
velocity surveys based on type Ia supernovae, surface brightness fluctuations
in ellipticals, and Tully-Fisher distances to spirals. The three peculiar
velocity samples are each in good agreement with the predicted velocities and
produce consistent results for \beta_{K}=\Omega\sbr{m}^{0.6}/b_{K}. Taken
together the best fit . We explore the effects of
morphology on the determination of by splitting the 2MASS sample into
E+S0 and S+Irr density fields and find both samples are equally good tracers of
the underlying dark matter distribution, but that early-types are more
clustered by a relative factor b\sbr{E}/b\sbr{S} \sim 1.6. The density
fluctuations of 2MASS galaxies in Mpc spheres in the local volume is
found to be \sigma\sbr{8,K} = 0.9. From this result and our value of
, we find \sigma_8 (\Omega\sbr{m}/0.3)^{0.6} = 0.91\pm0.12. This
is in excellent agreement with results from the IRAS redshift surveys, as well
as other cosmological probes. Combining the 2MASS and IRAS peculiar velocity
results yields \sigma_8 (\Omega\sbr{m}^/0.3)^{0.6} = 0.85\pm0.05.Comment: 11 pages, ApJ accepte
The Peculiar Velocities of Local Type Ia Supernovae and their Impact on Cosmology
We quantify the effect of supernova Type Ia peculiar velocities on the
derivation of cosmological parameters. The published distant and local Ia SNe
used for the Supernova Legacy Survey first-year cosmology report form the
sample for this study. While previous work has assumed that the local SNe are
at rest in the CMB frame (the No Flow assumption), we test this assumption by
applying peculiar velocity corrections to the local SNe using three different
flow models. The models are based on the IRAS PSCz galaxy redshift survey, have
varying beta = Omega_m^0.6/b, and reproduce the Local Group motion in the CMB
frame. These datasets are then fit for w, Omega_m, and Omega_Lambda using
flatness or LambdaCDM and a BAO prior. The chi^2 statistic is used to examine
the effect of the velocity corrections on the quality of the fits. The most
favored model is the beta=0.5 model, which produces a fit significantly better
than the No Flow assumption, consistent with previous peculiar velocity
studies. By comparing the No Flow assumption with the favored models we derive
the largest potential systematic error in w caused by ignoring peculiar
velocities to be Delta w = +0.04. For Omega_Lambda, the potential error is
Delta Omega_Lambda = -0.04 and for Omega_m, the potential error is Delta
Omega_m < +0.01. The favored flow model (beta=0.5) produces the following
cosmological parameters: w = -1.08 (+0.09,-0.08), Omega_m = 0.27 (+0.02,-0.02)
assuming a flat cosmology, and Omega_Lambda = 0.80 (+0.08,-0.07) and Omega_m =
0.27 (+0.02,-0.02) for a w = -1 (LambdaCDM) cosmology.Comment: 4 pages, 2 figures, 1 table, accepted for publication in ApJ Letter
A Test for Large-Scale Systematic Errors in Maps of Galactic Reddening
Accurate maps of Galactic reddening are important for a number of
applications, such as mapping the peculiar velocity field in the nearby
Universe. Of particular concern are systematic errors which vary slowly as a
function of position on the sky, as these would induce spurious bulk flow. We
have compared the reddenings of Burstein & Heiles (BH) and those of Schlegel,
Finkbeiner & Davis (SFD) to independent estimates of the reddening, for
Galactic latitudes |b| > 10. Our primary source of Galactic reddening estimates
comes from comparing the difference between the observed B-V colors of
early-type galaxies, and the predicted B-V color determined from the B-V--Mg_2
relation. We have fitted a dipole to the residuals in order to look for
large-scale systematic deviations. There is marginal evidence for a dipolar
residual in the comparison between the SFD maps and the observed early-type
galaxy reddenings. If this is due to an error in the SFD maps, then it can be
corrected with a small (13%) multiplicative dipole term. We argue, however,
that this difference is more likely to be due to a small (0.01 mag.) systematic
error in the measured B-V colors of the early-type galaxies. This
interpretation is supported by a smaller, independent data set (globular
cluster and RR Lyrae stars), which yields a result inconsistent with the
early-type galaxy residual dipole. BH reddenings are found to have no
significant systematic residuals, apart from the known problem in the region
230 < l < 310, -20 < b < 20.Comment: 8 pages, PASP, in press (Jan 1999
OMEGA AND BIASING FROM OPTICAL GALAXIES VERSUS POTENT MASS
The mass density field in the local universe, recovered by the POTENT method
from peculiar velocities of 3000 galaxies, is compared with the density
field of optically-selected galaxies. Both density fields are smoothed with a
Gaussian filter of radius 12 Mpc. Under the assumptions of
gravitational instability and a linear biasing parameter b\sbo between
optical galaxies and mass, we obtain \beta\sbo \equiv \om^{0.6}/b\sbo = 0.74
\pm 0.13. This result is obtained from a regression of POTENT mass density on
optical density after correcting the mass density field for systematic biases
in the velocity data and POTENT method. The error quoted is just the
formal error estimated from the observed scatter in the density--density
scatterplot; it does not include the uncertainty due to cosmic scatter in the
mean density or in the biasing relation. We do not attempt a formal analysis of
the goodness of fit, but the scatter about the fit is consistent with our
estimates of the uncertainties.Comment: Final revised version (minor typos corrected). 13 pages, gzipped tar
file containing LaTeX and figures. The Postscript file is available at
ftp://dust0.dur.ac.uk/pub/mjh/potopt/potopt.ps.Z or (gzipped) at
ftp://xxx.lanl.gov/astro-ph/ps/9501/9501074.ps.gz or via WWW at
http://xxx.lanl.gov/ps/astro-ph/9501074 or as separate LaTeX text and
encapsulated Postscript figures in a compressed tar'd file at
ftp://dust0.dur.ac.uk/pub/mjh/potopt/latex/potopt.tar.
Nonaxisymmetric, multi-region relaxed magnetohydrodynamic equilibrium solutions
We describe a magnetohydrodynamic (MHD) constrained energy functional for
equilibrium calculations that combines the topological constraints of ideal MHD
with elements of Taylor relaxation.
Extremizing states allow for partially chaotic magnetic fields and
non-trivial pressure profiles supported by a discrete set of ideal interfaces
with irrational rotational transforms.
Numerical solutions are computed using the Stepped Pressure Equilibrium Code,
SPEC, and benchmarks and convergence calculations are presented.Comment: Submitted to Plasma Physics and Controlled Fusion for publication
with a cluster of papers associated with workshop: Stability and Nonlinear
Dynamics of Plasmas, October 31, 2009 Atlanta, GA on occasion of 65th
birthday of R.L. Dewar. V2 is revised for referee
Prospects for measuring the electric dipole moment of the electron using electrically trapped polar molecules
Heavy polar molecules can be used to measure the electric dipole moment of
the electron, which is a sensitive probe of physics beyond the Standard Model.
The value is determined by measuring the precession of the molecule's spin in a
plane perpendicular to an applied electric field. The longer this precession
evolves coherently, the higher the precision of the measurement. For molecules
in a trap, this coherence time could be very long indeed. We evaluate the
sensitivity of an experiment where neutral molecules are trapped electrically,
and compare this to an equivalent measurement in a molecular beam. We consider
the use of a Stark decelerator to load the trap from a supersonic source, and
calculate the deceleration efficiency for YbF molecules in both strong-field
seeking and weak-field seeking states. With a 1s holding time in the trap, the
statistical sensitivity could be ten times higher than it is in the beam
experiment, and this could improve by a further factor of five if the trap can
be loaded from a source of larger emittance. We study some effects due to field
inhomogeneity in the trap and find that rotation of the electric field
direction, leading to an inhomogeneous geometric phase shift, is the primary
obstacle to a sensitive trap-based measurement.Comment: 22 pages, 7 figures, prepared for Faraday Discussion 14
Constraints on Association of Single-pulse Gamma-ray Bursts and Supernovae
We explore the hypothesis, similar to one recently suggested by Bloom and
colleagues, that some nearby supernovae are associated with smooth,
single-pulse gamma-ray bursts, possibly having no emission above ~ 300 keV. We
examine BATSE bursts with durations longer than 2 s, fitting those which can be
visually characterized as single-pulse events with a lognormal pulse model. The
fraction of events that can be reliably ascertained to be temporally and
spectrally similar to the exemplar, GRB 980425 - possibly associated with SN
1998bw - is 4/1573 or 0.25%. This fraction could be as high as 8/1573 (0.5%) if
the dimmest bursts are included. Approximately 2% of bursts are morphologically
similar to GRB 980425 but have emission above ~ 300 keV. A search of supernova
catalogs containing 630 detections during BATSE's lifetime reveals only one
burst (GRB 980425) within a 3-month time window and within the total 3-sigma
BATSE error radius that could be associated with a type Ib/c supernova. There
is no tendency for any subset of single-pulse GRBs to fall near the
Supergalactic Plane, whereas SNe of type Ib/c do show this tendency. Economy of
hypotheses leads us to conclude that nearby supernovae generally are not
related to smooth, single-pulse gamma-ray bursts.Comment: 25 pages, 5 figure
Optical properties of ion beam textured metals
Copper, silicon, aluminum, titanium and 316 stainless steel were textured by 1000 eV xenon ions from an 8 cm diameter electron bombardment ion source. Simultaneously sputter-deposited tantalum was used to facilitate the development of the surface microstructure. Scanning electron microscopy of the ion textured surfaces revealed two types of microstructure. Copper, silicon, and aluminum developed a cone structure with an average peak-to-peak distance ranging from 1 micron for silicon to 6 microns for aluminum. Titanium and 316 stainless steel developed a serpentine ridge structure. The average peak-to-peak distance for both of these materials was 0.5 micron. Spectral reflectance was measured using an integrating sphere and a holraum reflectometer. Total reflectance for air mass 0 and 2, solar absorptance and total emittance normalized for a 425 K black body were calculated from the reflectance measurements
Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions
By correcting the redshift--dependent distances for peculiar motions through
a number of peculiar velocity field models, we recover the true distances of a
wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities
cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on
catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups
and the remaining objects as field galaxies.
We model the peculiar velocity field using: i) a cluster dipole
reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and
Mark III catalogs of galaxy peculiar velocities. According to Mark III data the
Great Attractor has a smaller influence on local dynamics than previously
believed, whereas the Perseus-Pisces and Shapley superclusters acquire a
specific dynamical role. Remarkably, the Shapley structure, which is found to
account for nearly half the peculiar motion of the Local Group, is placed by
Mark III data closer to the zone of avoidance with respect to its optical
position.
Our multi--attractor model based on Mark III data favors a cosmological
density parameter Omega ~ 0.5 (irrespective of a biasing factor of order
unity). Differences among distance estimates are less pronounced in the ~ 2000
- 4000 km/s distance range than at larger or smaller distances. In the last
regions these differences have a serious impact on the 3D maps of the galaxy
distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are
available only upon request. Accepted by Ap
Stereodivergent, Diels-Alder-initiated organocascades employing α,β-unsaturated acylammonium salts: scope, mechanism, and application.
Chiral α,β-unsaturated acylammonium salts are novel dienophiles enabling enantioselective Diels-Alder-lactonization (DAL) organocascades leading to cis- and trans-fused, bicyclic γ- and δ-lactones from readily prepared dienes, commodity acid chlorides, and a chiral isothiourea organocatalyst under mild conditions. We describe extensions of stereodivergent DAL organocascades to other racemic dienes bearing pendant secondary and tertiary alcohols, and application to a formal synthesis of (+)-dihydrocompactin is described. A combined experimental and computational investigation of unsaturated acylammonium salt formation and the entire DAL organocascade pathway provide a rationalization of the effect of Brønsted base additives and enabled a controllable, diastereodivergent DAL process leading to a full complement of possible stereoisomeric products. Evaluation of free energy and enthalpy barriers in conjunction with experimentally observed temperature effects revealed that the DAL is a rare case of an entropy-controlled diastereoselective process. NMR analysis of diene alcohol-Brønsted base interactions and computational studies provide a plausible explanation of observed stabilization of exo transition-state structures through hydrogen-bonding effects
- …
