The mass density field in the local universe, recovered by the POTENT method
from peculiar velocities of ∼3000 galaxies, is compared with the density
field of optically-selected galaxies. Both density fields are smoothed with a
Gaussian filter of radius 12 h−1 Mpc. Under the assumptions of
gravitational instability and a linear biasing parameter b\sbo between
optical galaxies and mass, we obtain \beta\sbo \equiv \om^{0.6}/b\sbo = 0.74
\pm 0.13. This result is obtained from a regression of POTENT mass density on
optical density after correcting the mass density field for systematic biases
in the velocity data and POTENT method. The error quoted is just the 1σ
formal error estimated from the observed scatter in the density--density
scatterplot; it does not include the uncertainty due to cosmic scatter in the
mean density or in the biasing relation. We do not attempt a formal analysis of
the goodness of fit, but the scatter about the fit is consistent with our
estimates of the uncertainties.Comment: Final revised version (minor typos corrected). 13 pages, gzipped tar
file containing LaTeX and figures. The Postscript file is available at
ftp://dust0.dur.ac.uk/pub/mjh/potopt/potopt.ps.Z or (gzipped) at
ftp://xxx.lanl.gov/astro-ph/ps/9501/9501074.ps.gz or via WWW at
http://xxx.lanl.gov/ps/astro-ph/9501074 or as separate LaTeX text and
encapsulated Postscript figures in a compressed tar'd file at
ftp://dust0.dur.ac.uk/pub/mjh/potopt/latex/potopt.tar.