research

OMEGA AND BIASING FROM OPTICAL GALAXIES VERSUS POTENT MASS

Abstract

The mass density field in the local universe, recovered by the POTENT method from peculiar velocities of \sim3000 galaxies, is compared with the density field of optically-selected galaxies. Both density fields are smoothed with a Gaussian filter of radius 12 h1h^{-1} Mpc. Under the assumptions of gravitational instability and a linear biasing parameter b\sbo between optical galaxies and mass, we obtain \beta\sbo \equiv \om^{0.6}/b\sbo = 0.74 \pm 0.13. This result is obtained from a regression of POTENT mass density on optical density after correcting the mass density field for systematic biases in the velocity data and POTENT method. The error quoted is just the 1σ1\sigma formal error estimated from the observed scatter in the density--density scatterplot; it does not include the uncertainty due to cosmic scatter in the mean density or in the biasing relation. We do not attempt a formal analysis of the goodness of fit, but the scatter about the fit is consistent with our estimates of the uncertainties.Comment: Final revised version (minor typos corrected). 13 pages, gzipped tar file containing LaTeX and figures. The Postscript file is available at ftp://dust0.dur.ac.uk/pub/mjh/potopt/potopt.ps.Z or (gzipped) at ftp://xxx.lanl.gov/astro-ph/ps/9501/9501074.ps.gz or via WWW at http://xxx.lanl.gov/ps/astro-ph/9501074 or as separate LaTeX text and encapsulated Postscript figures in a compressed tar'd file at ftp://dust0.dur.ac.uk/pub/mjh/potopt/latex/potopt.tar.

    Similar works

    Full text

    thumbnail-image

    Available Versions