24 research outputs found

    Mechanisms that influence the formation of high-ozone regions in the boundary layer downwind of the Asian continent in winter and spring

    Get PDF
    The seasonal variation of ozone (O3) in the boundary layer (BL) over the western Pacific is investigated using a chemistry-transport model. The model results for January and April-May 2002 were evaluated by comparison with PEACE aircraft observations. In January, strong northwesterlies efficiently transported NOx from the continent, leading to an O3 increase of approximately 5-10 ppbv over a distance of about 3000 km. In April, southwesterlies dominated due to anticyclone development over the western Pacific. Along this flow, O3 continued to be produced by NO x emitted from East Asia. This resulted in the formation of a high-O3 (> 50 ppbv) region extending along the coastal areas of East Asia. This seasonal change in O3 was driven in part by a change in the net O3 production rate due to increases in solar UV and H 2O. Its exact response depended on the NOx values in the BL. The net O3 production rate increased between winter and spring over the Asian continent and decreased over the remote western Pacific. Model simulations show that about 25% of the total O3 (of 10-20 ppbv) increase over the coastal region of Northeast Asia was due to local production from NOx emissions from China, and the rest was due to changes in background levels as well as emissions from Korea, Japan, and east Siberia. Uplift of BL air over Asia, horizontal transport in the free troposphere, and subsidence were the principal mechanisms of transporting Asian O3 to the central and eastern North Pacific Copyright 2008 by the American Geophysical Union

    Biogenic versus anthropogenic sources of CO in the United States

    No full text

    Reactive Nitrogen Distribution and Partitioning in the North American Troposphere and Lowermost Stratosphere

    Get PDF
    A comprehensive group of reactive nitrogen species (NO, NOz, HN03, HOzN02, PANs, alkyl nitrates, and aerosol-NO3) were measured over North America during July/August 2004 from the NASA DC-8 platform (0.1 - 12 km). Nitrogen containing tracers of biomass combustion (HCN and CH3CN) were also measured along with a host of other gaseous (CO, VOC, OVOC, halocarbon) and aerosol tracers. Clean background air as well as air with influences from biogenic emissions, anthropogenic pollution, biomass combustion, convection, lightning, and the stratosphere was sampled over the continental United States, the Atlantic, and the Pacific. The North American upper troposphere (UT) was found to be greatly influenced by both lightning NO, and surface pollution lofted via convection and contained elevated concentrations of PAN, ozone, hydrocarbons, and NO,. Observational data suggest that lightning was a far greater contributor to NO, in the UT than previously believed. PAN provided a dominant reservoir of reactive nitrogen in the UT while nitric acid dominated in the lower troposphere (LT). Peroxynitric acid (H02N02) was present in sizable concentrations peaking at around 8 km. Aerosol nitrate appeared to be mostly contained in large soil based particles in the LT. Plumes from Alaskan fires contained large amounts of PAN and aerosol nitrate but little enhancement in ozone. A comparison of observed data with simulations from four 3-D models shows significant differences between observations and models as well as among models. We investigate the partitioning and interplay of the reactive nitrogen species within characteristic air masses and further examine their role in ozone formation
    corecore