1,093 research outputs found
Measurement and analysis of critical crack tip processes during fatigue crack growth
The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied
A comparison of single-cycle versus multiple-cycle proof testing strategies
An evaluation of single-cycle and multiple-cycle proof testing (MCPT) strategies for SSME components is described. Data for initial sizes and shapes of actual SSME hardware defects are analyzed statistically. Closed-form estimates of the J-integral for surface flaws are derived with a modified reference stress method. The results of load- and displacement-controlled stable crack growth tests on thin IN-718 plates with deep surface flaws are summarized. A J-resistance curve for the surface-cracked configuration is developed and compared with data from thick compact tension specimens. The potential for further crack growth during large unload/reload cycles is discussed, highlighting conflicting data in the literature. A simple model for ductile crack growth during MCPT based on the J-resistance curve is used to study the potential effects of key variables. The projected changes in the crack size distribution during MCPT depend on the interactions between several key parameters, including the number of proof cycles, the nature of the resistance curve, the initial crack size distribution, the component boundary conditions (load vs. displacement control), and the magnitude of the applied load or displacement. The relative advantages of single-cycle and multiple-cycle proof testing appear to be specific, therefore, to individual component geometry, material, and loading
Hydrogen isotope behavior during rhyolite glass hydration under hydrothermal conditions
The diffusion of molecular water (H2Om) from the environment into volcanic glass can hydrate the glass up to several wt% at low temperature over long timescales. During this process, the water imprints its hydrogen isotope composition (δDH2O) to the glass (δDgl) offset by a glass-H2O fractionation factor (ΔDgl-H2O = δDgl – δDH2O) which is approximately -33‰ at Earth surface temperatures. Glasses hydrate much more rapidly at higher, sub-magmatic temperatures as they interact with H2O during eruption, transport, and emplacement. To aid in the interpretation of δDgl in natural samples, we present hydrogen isotope results from vapor hydration experiments conducted at 175–375 oC for durations of hours to months using natural volcanic glasses. The results can be divided into two thermal regimes: above 250 oC and below 250 oC. Lower temperature experiments yield raw ΔDgl-H2O values in the range of -33 ± 11‰. Experiments at 225 oC using both positive and negative initial ΔDgl-H2O values converge on this range of values, suggesting this range represents the approximate equilibrium fractionation for H isotopes between glass and H2O vapor (103lnαgl-H2O) below 250 oC. Variation in ΔDgl-H2O (-33 ± 11‰) between different experiments and glasses may arise from incomplete hydration, analytical uncertainty, differences in glass chemistry, and/or subordinate kinetic isotope effects. Experiments above 250 oC yield unexpectedly low δDgl values with ΔDgl-H2O values of ≤–85‰. While alteration alone is incapable of explaining the data, these run products have more extensive surface alteration and are not interpreted to reflect equilibrium fractionation between glass and H2O vapor. Fourier transform infrared spectroscopy (FTIR) shows that glass can hydrate with as much as 5.9 wt% H2Om and 1.0 wt% hydroxl (OH-) in the highest P-T experiment at 375 oC and 21.1 MPa. Therefore, we employ a 1D isotope diffusion– reaction model of glass hydration to evaluate the roles of equilibrium fractionation, isotope diffusion, water speciation reactions internal to the glass, and changing boundary conditions (e.g. alteration and dissolution). At lower temperatures, the best fitting model results to experimental data for low silica rhyolite (LSR) glasses require only an equilibrium fractionation factor and yield 103lnαgl-H2O values of -33‰± 5‰and -25‰± 5‰at 175 oC and 225 oC, respectively. At higher temperatures, ΔDgl-H2O is dominated by boundary layer effects during glass hydration and glass surface alteration. The modeled bulk δDgl value is highly responsive to changes in the δDgl boundary condition regardless of the magnitude of other kinetic effects. Observed glass dissolution and surficial secondary mineral formation are likely to impose a disequilibrium boundary layer that drives extreme δDgl fractionation with progressive glass hydration. These results indicate that the observed ΔDgl-H2O of ~-33 ± 11‰ can be cautiously applied as an equilibrium 103lnαgl-H2O value to natural silicic glasses hydrated below 250 oC to identify hydration sources. This approximate ΔDgl-H2O may be applicable to even higher temperature glasses hydrated on short timescales (of seconds to minutes) in phreatomagmatic or submarine eruptions before H2O in the glass is primarily affected by boundary layer effects associated with alteration on the glass surface
Analysis of small crack behavior for airframe applications
The small fatigue crack problem is critically reviewed from the perspective of airframe applications. Different types of small cracks-microstructural, mechanical, and chemical-are carefully defined and relevant mechanisms identified. Appropriate analysis techniques, including both rigorous scientific and practical engineering treatments, are briefly described. Important materials data issues are addressed, including increased scatter in small crack data and recommended small crack test methods. Key problems requiring further study are highlighted
Real-time Atomistic Observation of Structural Phase Transformations in Individual Hafnia Nanorods
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolution the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics
- …