847 research outputs found

    A SVM and k-NN Restricted Stacking to Improve Land Use and Land Cover Classification

    Get PDF
    Land use and land cover (LULC) maps are remote sensing products that are used to classify areas into different landscapes. The newest techniques have been applied to improve the final LULC classification and most of them are based on SVM classifiers. In this paper, a new method based on a multiple classifiers ensemble to improve LULC map accuracy is shown. The method builds a statistical raster from LIDAR and image fusion data following a pixel-oriented strategy. Then, the pixels from a training area are used to build a SVM and k-NN restricted stacking taking into account the special characteristics of spatial data. A comparison between a SVM and the restricted stacking is carried out. The results of the tests show that our approach improves the results in the context of the real data from a riparian area of Huelva (Spain)

    Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest

    Get PDF
    Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, carbon storage in moderate to high biomass forests is difficult to estimate with conventional optical or radar sensors. Lidar (light detection and ranging) instruments measure the vertical structure of forests and thus hold great promise for remotely sensing the quantity and spatial organization of forest biomass. In this study, we compare the relationships between lidar measured canopy structure and coincident field measurements of forest stand structure at five locations in the Pacific Northwest of the U.S.A. with contrasting composition. Coefficient of determination values (r2) ranged between 41% and 96%. Correlations for two important variables, LAI (81%) and above ground biomass (92%), were noteworthy, as was the fact that neither variable showed an asymptotic response. Of the 17 stand structure variables considered in this study, we were able to develop eight equations that were valid for all sites, including equations for two variables generally considered to be highly important (aboveground biomass and leaf area index). The other six equations that were valid for all sites were either related to height (which is most directly measured by lidar) or diameter at breast height (which should be closely related to height). Four additional equations (a total of 12) were applicable to all sites where either Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla) or Sitka spruce (Picea sitchensi) were dominant. Stand structure variables in sites dominated by true firs (Abies sp.) or ponderosa pine (Pinus ponderosa) had biases when predicted by these four additional equations. Productivity-related variables describing the edaphic, climatic and topographic environment of the sites where available for every regression, but only two of the 17 equations (maximum diameter at breast height, stem density) incorporated them. Given the wide range of these environmental conditions sampled, we conclude that the prediction of stand structure is largely independent of environmental conditions in this study area. Most studies of lidar remote sensing for predicting stand structure have depended on intensive data collections within a relatively small study area. This study indicates that the relationships between many stand structure indices and lidar measured canopy structure have generality at the regional scale. This finding, if replicated in other regions, would suggest that mapping of stand structure using lidar may be accomplished by distributing field sites extensively over a region, thus reducing the overall inventory effort required

    Hydrogen isotope behavior during rhyolite glass hydration under hydrothermal conditions

    Get PDF
    The diffusion of molecular water (H2Om) from the environment into volcanic glass can hydrate the glass up to several wt% at low temperature over long timescales. During this process, the water imprints its hydrogen isotope composition (δDH2O) to the glass (δDgl) offset by a glass-H2O fractionation factor (ΔDgl-H2O = δDgl – δDH2O) which is approximately -33‰ at Earth surface temperatures. Glasses hydrate much more rapidly at higher, sub-magmatic temperatures as they interact with H2O during eruption, transport, and emplacement. To aid in the interpretation of δDgl in natural samples, we present hydrogen isotope results from vapor hydration experiments conducted at 175–375 oC for durations of hours to months using natural volcanic glasses. The results can be divided into two thermal regimes: above 250 oC and below 250 oC. Lower temperature experiments yield raw ΔDgl-H2O values in the range of -33 ± 11‰. Experiments at 225 oC using both positive and negative initial ΔDgl-H2O values converge on this range of values, suggesting this range represents the approximate equilibrium fractionation for H isotopes between glass and H2O vapor (103lnαgl-H2O) below 250 oC. Variation in ΔDgl-H2O (-33 ± 11‰) between different experiments and glasses may arise from incomplete hydration, analytical uncertainty, differences in glass chemistry, and/or subordinate kinetic isotope effects. Experiments above 250 oC yield unexpectedly low δDgl values with ΔDgl-H2O values of ≤–85‰. While alteration alone is incapable of explaining the data, these run products have more extensive surface alteration and are not interpreted to reflect equilibrium fractionation between glass and H2O vapor. Fourier transform infrared spectroscopy (FTIR) shows that glass can hydrate with as much as 5.9 wt% H2Om and 1.0 wt% hydroxl (OH-) in the highest P-T experiment at 375 oC and 21.1 MPa. Therefore, we employ a 1D isotope diffusion– reaction model of glass hydration to evaluate the roles of equilibrium fractionation, isotope diffusion, water speciation reactions internal to the glass, and changing boundary conditions (e.g. alteration and dissolution). At lower temperatures, the best fitting model results to experimental data for low silica rhyolite (LSR) glasses require only an equilibrium fractionation factor and yield 103lnαgl-H2O values of -33‰± 5‰and -25‰± 5‰at 175 oC and 225 oC, respectively. At higher temperatures, ΔDgl-H2O is dominated by boundary layer effects during glass hydration and glass surface alteration. The modeled bulk δDgl value is highly responsive to changes in the δDgl boundary condition regardless of the magnitude of other kinetic effects. Observed glass dissolution and surficial secondary mineral formation are likely to impose a disequilibrium boundary layer that drives extreme δDgl fractionation with progressive glass hydration. These results indicate that the observed ΔDgl-H2O of ~-33 ± 11‰ can be cautiously applied as an equilibrium 103lnαgl-H2O value to natural silicic glasses hydrated below 250 oC to identify hydration sources. This approximate ΔDgl-H2O may be applicable to even higher temperature glasses hydrated on short timescales (of seconds to minutes) in phreatomagmatic or submarine eruptions before H2O in the glass is primarily affected by boundary layer effects associated with alteration on the glass surface

    Extracting ecological and biophysical information from AVHRR optical data: An integrated algorithm based on inverse modeling

    Get PDF
    Satellite remote sensing provides the only means of directly observing the entire surface of the Earth at regular spatial and temporal intervals

    Extracting ecological and biophysical information from AVHRR optical data: An integrated algorithm based on inverse modeling

    Get PDF
    Satellite remote sensing provides the only means of directly observing the entire surface of the Earth at regular spatial and temporal intervals

    Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rate of emergence of human pathogens is steadily increasing; most of these novel agents originate in wildlife. Bats, remarkably, are the natural reservoirs of many of the most pathogenic viruses in humans. There are two bat genome projects currently underway, a circumstance that promises to speed the discovery host factors important in the coevolution of bats with their viruses. These genomes, however, are not yet assembled and one of them will provide only low coverage, making the inference of most genes of immunological interest error-prone. Many more wildlife genome projects are underway and intend to provide only shallow coverage.</p> <p>Results</p> <p>We have developed a statistical method for the assembly of gene families from partial genomes. The method takes full advantage of the quality scores generated by base-calling software, incorporating them into a complete probabilistic error model, to overcome the limitation inherent in the inference of gene family members from partial sequence information. We validated the method by inferring the human IFNA genes from the genome trace archives, and used it to infer 61 type-I interferon genes, and single type-II interferon genes in the bats <it>Pteropus vampyrus </it>and <it>Myotis lucifugus</it>. We confirmed our inferences by direct cloning and sequencing of IFNA, IFNB, IFND, and IFNK in <it>P. vampyrus</it>, and by demonstrating transcription of some of the inferred genes by known interferon-inducing stimuli.</p> <p>Conclusion</p> <p>The statistical trace assembler described here provides a reliable method for extracting information from the many available and forthcoming partial or shallow genome sequencing projects, thereby facilitating the study of a wider variety of organisms with ecological and biomedical significance to humans than would otherwise be possible.</p

    Workforce Characteristics, Perceptions, Stress, and Satisfaction among Staff in Green House and Other Nursing Homes

    Get PDF
    OBJECTIVE: To compare workforce characteristics and staff perceptions of safety, satisfaction, and stress between Green House (GH) and comparison nursing homes (CNHs). DATA SOURCES/STUDY SETTING: Primary data on staff perceptions of safety, stress, and satisfaction from 13 GHs and 8 comparison NHs in 11 states; secondary data from human resources records on workforce characteristics, turnover, and staffing from 01/01/2011-06/30/2012. STUDY DESIGN: Observational study. DATA COLLECTION METHODS: Workforce data were from human resources offices; staff perceptions were from surveys. PRINCIPAL FINDINGS: Few significant differences were found between GH and CNHs. Exceptions were GH direct caregivers were older, provided twice the normalized hours per week budgeted per resident than CNAs in CNHs or Legacy NHs, and trended toward lower turnover. CONCLUSIONS: GH environment may promote staff longevity and does not negatively affect worker's stress, safety perceptions, or satisfaction. Larger studies are needed to confirm findings
    corecore