2 research outputs found

    Control System for the Next Generation In-flight Separator Super-FRS applied to New Isotope Search with the FRS

    Get PDF
    The construction of the upcoming FAIR facility entails an upgrade of the existing GSI accelerator facility. One of the upgrades is the integration of the new LSA control system framework, which is licensed and adapted from CERN, in order to provide a unified control environment for all accelerators, rings and transfer lines at both the GSI and FAIR facility. As part of this work, it was possible to incorporate the FRS as a machine-model within LSA by developing and implementing Parameter hierarchies and Makerules to enable streamlined and maximum parallel operations. For this purpose a FRS General Target Hierarchy was implemented to virtually map targets, target ladders, degraders, degrader disks, degrader ladders, detectors and detector ladders as realistically as possible with additional Makerules to facilitate automated online energy-loss calculations, secondary beam production within targets, operator driven magnetic rigidity overwriting and ion-optical target alignment calculations. Additionally slits, pneumatic drives and stepper motors were introduced into the machine-model, as well. Benchmarking proved for the machine-model and LSA to be equivalent to previous control systems by reproducing old experimental settings within an accuracy of 10^-4 and 10^-3 for the magnetic rigidity and current, respectively. Contemporary experiments can be even identically reproduced within the measurement and setting precision. Additional testing with a Ar-40 and U-238 primary beam showed the machine-model's capabilities in correctly transporting primary and secondary beam fragments to the destined experimental station without previous setting calculation via LISE++, proving all functionalities operative. This foundation was used during FAIR Phase-0 experiments at the GSI to produce and using the methods described here it was possible to preliminarily identify up to 21 new isotopes with a relativistic Pb-208 primary beam at 1050 AMeV impinging on a beryllium target of 4 g/cm^2 thickness with a niobium stripper backing of 225 mg/cm^2 thickness to first produce Re-200, -201, -202, W-198, -199, Ta-195, -196, -197, Hf-191, -192, -193, Lu-189, -190, -191, Yb-186, -187, Tm-182, -183, -184, -185 and Er-181

    A new Time-of-flight detector for the R 3 B setup

    No full text
    © 2022, The Author(s).We present the design, prototype developments and test results of the new time-of-flight detector (ToFD) which is part of the R3B experimental setup at GSI and FAIR, Darmstadt, Germany. The ToFD detector is able to detect heavy-ion residues of all charges at relativistic energies with a relative energy precision σΔE/ ΔE of up to 1% and a time precision of up to 14 ps (sigma). Together with an elaborate particle-tracking system, the full identification of relativistic ions from hydrogen up to uranium in mass and nuclear charge is possible.11Nsciescopu
    corecore