137 research outputs found
Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella
The quest for designing new self-propelled colloids is fuelled by the demand
for simple experimental models to study the collective behaviour of their more
complex natural counterparts. Most synthetic self-propelled particles move by
converting the input energy into translational motion. In this work we address
the question if simple self-propelled spheres can assemble into more complex
structures that exhibit rotational motion, possibly coupled with translational
motion as in flagella. We exploit a combination of induced dipolar interactions
and a bonding step to create permanent linear bead chains, composed of
self-propelled Janus spheres, with a well-controlled internal structure. Next,
we study how flexibility between individual swimmers in a chain can affect its
swimming behaviour. Permanent rigid chains showed only active rotational or
spinning motion, whereas longer semi-flexible chains showed both translational
and rotational motion resembling flagella like-motion, in the presence of the
fuel. Moreover, we are able to reproduce our experimental results using
numerical calculations with a minimal model, which includes full hydrodynamic
interactions with the fluid. Our method is general and opens a new way to
design novel self-propelled colloids with complex swimming behaviours, using
different complex starting building blocks in combination with the flexibility
between them.Comment: 27 pages, 10 figure
Microfabricated Gaps Reveal the Effect of Geometrical Control in Wound Healing
The geometry (size and shape) of gaps is a key determinant in controlling gap closure during wound healing. However, conventional methods for creating gaps result in unâdefined geometries and poorly characterized conditions (cell death factors and cell debris), which can influence the gap closure process. To overcome these limitations, a novel method to create wellâdefined geometrical gaps is developed. First, smooth muscle cells (SMCs) are seeded in variously shaped microâcontainers made out of hyaluronic acid hydrogels. Cell proliferation and cell tension induce fibrous collagen production by SMCs predominantly around the edges of the microâcontainers. Upon removal of SMCs, the selectively deposited collagen results in microâcontainers with cellâadhesive regions along the edges and walls. Fibroblasts are seeded in these microâcontainers, and upon attaching and spreading, they naturally form gaps with different geometries. The rapid proliferation of fibroblasts from the edge results in filling and closure of the gaps. It is demonstrated that gap closure rate as well as closure mechanism is strongly influenced by geometrical features, which points to an important role for cellular tension and cell proliferation in gap closure
Microfabricated Gaps Reveal the Effect of Geometrical Control in Wound Healing
The geometry (size and shape) of gaps is a key determinant in controlling gap closure during wound healing. However, conventional methods for creating gaps result in unâdefined geometries and poorly characterized conditions (cell death factors and cell debris), which can influence the gap closure process. To overcome these limitations, a novel method to create wellâdefined geometrical gaps is developed. First, smooth muscle cells (SMCs) are seeded in variously shaped microâcontainers made out of hyaluronic acid hydrogels. Cell proliferation and cell tension induce fibrous collagen production by SMCs predominantly around the edges of the microâcontainers. Upon removal of SMCs, the selectively deposited collagen results in microâcontainers with cellâadhesive regions along the edges and walls. Fibroblasts are seeded in these microâcontainers, and upon attaching and spreading, they naturally form gaps with different geometries. The rapid proliferation of fibroblasts from the edge results in filling and closure of the gaps. It is demonstrated that gap closure rate as well as closure mechanism is strongly influenced by geometrical features, which points to an important role for cellular tension and cell proliferation in gap closure
Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions
Here we present a novel surface modification method based on the sequential layer-by-layer deposition of polyelectrolytes yielding hydrophilic microchannels in PDMS-based microfluidic devices. The coatings are long-term stable and allow for the generation of monodisperse oil-in-water microdroplets even several months after the channel surface treatment. Due to the robustness of the polyelectrolyte multilayers ultra-high flow rates can be applied, making high-throughput droplet formation in the jetting mode possible. Furthermore, we successfully used our method to selectively modify the surface properties in certain areas of assembled microchannels. The resulting partially hydrophilic, partially hydrophobic microfluidic devices allow for the production of monodisperse water-in-oil-in-water double emulsions.<br/
Microdroplet fabrication of silverâagarose nanocomposite beads for SERS optical accumulation
Microdroplets have been used as reactors for the fabrication of agarose beads with high uniformity in shape and size, and densely loaded with silver ions, which were subsequently reduced into nanoparticles using hydrazine. The resulting nanocomposite beads not only display a high plasmonic activity, but can also trap/concentrate analytes, which can be identified by means of surface-enhanced Raman scattering (SERS) spectroscopy. The size of the beads is such that it allows the detection of a single bead under a conventional optical microscope, which is very useful to reduce the amount of material required for SERS detectio
Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes
Coacervates droplets have long been considered as potential protocells to mimic living cells. However, these droplets lack a membrane and are prone to coalescence, limiting their ability to survive, interact, and organize into higher-order assemblies. This work shows that tyrosine-rich peptide conjugates can undergo liquidâliquid phase separation in a well-defined pH window and transform into stable membrane-enclosed protocells by enzymatic oxidation and cross-linking at the liquidâliquid interface. The oxidation of the tyrosine-rich peptides into dityrosine creates a semipermeable, flexible membrane around the coacervates with tunable thickness, which displays strong intrinsic fluorescence, and stabilizes the coacervate protocells against coalescence. The membranes have an effective molecular weight cut-off of 2.5 kDa, as determined from the partitioning of small dyes and labeled peptides, RNA, and polymers into the membrane-enclosed coacervate protocells. Flicker spectroscopy reveals a membrane bending rigidity of only 0.1kBT, which is substantially lower than phospholipid bilayers despite a larger membrane thickness. Finally, it is shown that enzymes can be stably encapsulated inside the protocells and be supplied with substrates from outside, which opens the way for these membrane-bound compartments to be used as molecularly crowded artificial cells capable of communication or as a vehicle for drug delivery.publishedVersio
Endocytosis of coacervates into liposomes
[Image: see text] Recent studies have shown that the interactions between condensates and biological membranes are of functional importance. Here, we study how the interaction between complex coacervates and liposomes as model systems can lead to wetting, membrane deformation, and endocytosis. Depending on the interaction strength between coacervates and liposomes, the wetting behavior ranged from nonwetting to engulfment (endocytosis) and complete wetting. Endocytosis of coacervates was found to be a general phenomenon: coacervates made from a wide range of components could be taken up by liposomes. A simple theory taking into account surface energies and coacervate sizes can explain the observed morphologies. Our findings can help to better understand condensateâmembrane interactions in cellular systems and provide new avenues for intracellular delivery using coacervates
A catalytically active oscillator made from small organic molecules
Oscillatory systems regulate many biological processes, including key cellular functions such as metabolism and cell division, as well as larger-scale processes such as circadian rhythm and heartbeat. Abiotic chemical oscillations, discovered originally in inorganic systems, inspired the development of various synthetic oscillators for application as autonomous time-keeping systems in analytical chemistry, materials chemistry and the biomedical field. Expanding their role beyond that of a pacemaker by having synthetic chemical oscillators periodically drive a secondary function would turn them into significantly more powerful tools. However, this is not trivial because the participation of components of the oscillator in the secondary function might jeopardize its time-keeping ability. We now report a small molecule oscillator that can catalyse an independent chemical reaction in situ without impairing its oscillating properties. In a flow system, the concentration of the catalytically active product of the oscillator shows sustained oscillations and the catalysed reaction is accelerated only during concentration peaks. Augmentation of synthetic oscillators with periodic catalytic action allows the construction of complex systems that, in the future, may benefit applications in automated synthesis, systems and polymerization chemistry and periodic drug delivery. </p
Patterning electro-osmotic flow with patterned surface charge
This Letter reports the measurement of electro-osmotic flows (EOF) in microchannels with surface charge patterned on the 200 mu m scale. We have investigated two classes of patterns: (1) Those in which the surface charge varies along a direction perpendicular to the electric field used to drive the EOF; this type of pattern generates multidirectional flow along the direction of the field. (2) Those in which the surface charge pattern varies parallel to the field; this pattern generates recirculating cellular flew, and thus causes motion both parallel and perpendicular to the external field. Measurements of both of these flours agree well with theory in the Limit of thin double layers and low surface potential
Direct analysis of complex reaction mixtures: formose reaction
Complex reaction mixtures, like those postulated on early Earth, present an analytical challenge because of the number of components, their similarity, and vastly different concentrations. Interpreting the reaction networks is typically based on simplified or partial data, limiting our insight. We present a new approach based on online monitoring of reaction mixtures formed by the formose reaction by ion-mobility-separation mass-spectrometry. Monitoring the reaction mixtures led to large data sets that we analyzed by non-negative matrix factorization, thereby identifying ion-signal groups capturing the time evolution of the network. The groups comprised â300 major ion signals corresponding to sugar-calcium complexes formed during the formose reaction. Multivariate analysis of the kinetic profiles of these complexes provided an overview of the interconnected kinetic processes in the solution, highlighting different pathways for sugar growth and the effects of different initiators on the initial kinetics. Reconstructing the network's topology further, we revealed so far unnoticed fast retro-aldol reaction of ketoses, which significantly affects the initial reaction dynamics. We also detected the onset of sugar-backbone branching for C6 sugars and cyclization reactions starting for C5 sugars. This top-down analytical approach opens a new way to analyze complex dynamic mixtures online with unprecedented coverage and time resolutio
- âŠ