250 research outputs found

    Exoplanet direct imaging in ground-based conditions on THD2 bench

    Full text link
    The next generation of ground-based instruments aims to break through the knowledge we have on exoplanets by imaging circumstellar environments always closer to the stars. However, direct imaging requires an AO system and high-contrast techniques like a coronagraph to reject the diffracted light of an observed star and an additional wavefront sensor to control quasi-static aberrations, including the non common path aberrations. To observe faint objects, a focal plane wavefront sensor with a sub-nanometric wavefront control capability is required. In the past few years, we developed the THD2 bench which is a testbed for high-contrast imaging techniques, working in visible and near infrared wavelengths and currently reaching contrast levels lower than 1e-8 under space-like simulated conditions. We recently added a turbulence wheel on the optical path which simulates the residuals given by a typical extreme adaptive optics system and we tested several ways to remove quasi-statics speckles. One way to estimate the aberrations is a method called pair-wise probing where we record few images with known-shapes we apply on the adaptive optics deformable mirror. Once estimated, we seek to minimize the focal-plane electric field by an algorithm called Electric Field Conjugation. In this paper, we present the first results obtained on the THD2 bench using these two techniques together in turbulent conditions. We then compare the achieved performance with the one expected when all the quasi-static speckles are corrected.Comment: 9 pages, 3 figures, AO4ELT6 Qu\'ebec cit

    The Case Study Approach

    Get PDF
    The case study approach allows in-depth, multi-faceted explorations of complex issues in their real-life settings. The value of the case study approach is well recognised in the fields of business, law and policy, but somewhat less so in health services research. Based on our experiences of conducting several health-related case studies, we reflect on the different types of case study design, the specific research questions this approach can help answer, the data sources that tend to be used, and the particular advantages and disadvantages of employing this methodological approach. The paper concludes with key pointers to aid those designing and appraising proposals for conducting case study research, and a checklist to help readers assess the quality of case study reports

    Lyot-plane phase masks for improved high-contrast imaging with a vortex coronagraph

    Get PDF
    Context. The vortex coronagraph is an optical instrument that precisely removes on-axis starlight allowing for high contrast imaging at small angular separation from the star, a crucial capability for direct detection and characterization of exoplanets and circumstellar disks. Telescopes with aperture obstructions, such as secondary mirrors and spider support structures, require advanced coronagraph designs to provide adequate starlight suppression. Aims. We introduce a phase-only Lyot-plane optic to the vortex coronagraph, which offers improved contrast performance on telescopes with complicated apertures. Potential solutions for the European Extremely Large Telescope (E-ELT) are described. Methods. Adding a Lyot-plane phase mask relocates residual starlight away from a region of the image plane, thereby reducing stellar noise and improving sensitivity to off-axis companions. The phase mask is calculated using an iterative phase retrieval algorithm. Results. Numerically, we achieve a contrast on the order of 10-6 for a companion with angular displacement as small as 4λ/D with an E-ELT type aperture. Even in the presence of aberrations, improved performance is expected compared to either a conventional vortex coronagraph or an optimized pupil plane phase element alone

    Infrared study of spin crossover Fe-picolylamine complex

    Full text link
    Infrared (IR) absorption spectroscopy has been used to probe the evolution of microscopic vibrational states upon the temperature- and photo-induced spin crossovers in [Fe(2-picolylamine)3]Cl2EtOH (Fe-pic). To overcome the small sizes and the strong IR absorption of the crystal samples used, an IR synchrotron radiation source and an IR microscope have been used. The obtained IR spectra of Fe-pic show large changes between high-spin and low-spin states for both the temperature- and the photo- induced spin crossovers. Although the spectra in the temperature- and photo-induced high-spin states are relatively similar to each other, they show distinct differences below 750 cm-1. This demonstrates that the photo-induced high-spin state involves microscopically different characters from those of the temperature-induced high-spin state. The results are discussed in terms of local pressure and structural deformations within the picolylamine ligands, and in terms of their possible relevance to the development of macroscopic photo-induced phase in Fe-pic.Comment: 6 pages (text) and 6 figures,submitted to J. Phys. Soc. Jp

    A Mach-Zehnder interferometer based on orbital angular momentum for improved vortex coronagraph efficiency

    Get PDF
    The Annular Groove Phase Mask (AGPM) is a vectorial vortex phase mask. It acts as a half-wave plate with a radial fast axis orientation operating in the mid infrared domain. When placed at the focus of a telescope element provides a continuous helical phase ramp for an on axis sources, which creates the orbital angular momentum. Thanks to that phase, the intensity of the central source is canceled by a down-stream pupil stop, while the off axis sources are not affected. However due to experimental conditions the nulling is hardly perfect. To improve the null, a Mach-Zehnder interferometer containing Dove prisms differently oriented can be proposed to sort out light based on its orbital angular momentum (OAM). Thanks to the differential rotation of the beam, a π phase shift is achieved for the on axis light affected by a non zero OAM. Therefore the contrast between the star and its faint companion is enhanced. Nevertheless, due the Dove prisms birefringence, the performance of the interferometer is relatively poor. To solve this problem, we propose to add a birefringent wave-plate in each arm to compensate this birefringence. In this paper, we will develop the mathematical model of the wave front using the Jones formalism. The performance of the interferometer is at first computed for the simple version without the birefringent plate. Then the effect of the birefringent plate is be mathematically described and the performance is re-computed

    The Subaru Coronagraphic Extreme Adaptive Optics system: enabling high-contrast imaging on solar-system scales

    Full text link
    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multi-band instrument which makes use of light from 600 to 2500nm allowing for coronagraphic direct exoplanet imaging of the inner 3 lambda/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1 lambda/D. Non-common path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate, NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid 2016) can take deeper exposures and/or perform angular, spectral and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable sub-diffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.Comment: Accepted for publication, 20 pages, 10 figure

    FIRST, a pupil-remapping fiber interferometer at the Subaru Telescope: on-sky results

    Get PDF
    FIRST, the Fibered Imager foR a Single Telescope, is a spectro-imager using single-mode fibers for pupil remap- ping, allowing measurements beyond the telescope diffraction limit. Integrated on the Subaru Coronagraphic Extreme Adaptive Optics instrument at the Subaru Telescope, it benefits from a very stable visible light wave- front allowing to acquire long exposure and operate on significantly fainter sources than previously possible. On-sky results demonstrated the ability of the instrument to detect stellar companions separated 43mas in the case of the Capella binary system. A similar approach on an extremely large telescope would offer unique scientific opportunities for companion detection and characterization at very high angular resolution
    corecore