11 research outputs found

    Supersymmetric dS/CFT

    Full text link
    We put forward new explicit realisations of dS/CFT that relate N=2{\cal N}=2 supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The partition function of the free supersymmetric vector model deformed by a range of low spin deformations that preserve supersymmetry appears to specify a well-defined wave function with asymptotic de Sitter boundary conditions in the bulk. In particular we find the wave function is globally peaked at undeformed de Sitter space, with a low amplitude for strong deformations. This suggests that supersymmetric de Sitter space is stable in higher-spin gravity and in particular free from ghosts. We speculate this is a limiting case of the de Sitter realizations in exotic string theories.Comment: V2: references and comments added, typos corrected, version published in JHEP; 27 pages, 3 figures, 1 tabl

    On the equation of state and atomic mean square displacement of crystals

    No full text
    We have presented a Green's function method for the calculation of the atomic mean square displacement (MSD) for an anharmonic Hamil toni an . This method effectively sums a whole class of anharmonic contributions to MSD in the perturbation expansion in the high temperature limit. Using this formalism we have calculated the MSD for a nearest neighbour fcc Lennard Jones solid. The results show an improvement over the lowest order perturbation theory results, the difference with Monte Carlo calculations at temperatures close to melting is reduced from 11% to 3%. We also calculated the MSD for the Alkali metals Nat K/ Cs where a sixth neighbour interaction potential derived from the pseudopotential theory was employed in the calculations. The MSD by this method increases by 2.5% to 3.5% over the respective perturbation theory results. The MSD was calculated for Aluminum where different pseudopotential functions and a phenomenological Morse potential were used. The results show that the pseudopotentials provide better agreement with experimental data than the Morse potential. An excellent agreement with experiment over the whole temperature range is achieved with the Harrison modified point-ion pseudopotential with Hubbard-Sham screening function. We have calculated the thermodynamic properties of solid Kr by minimizing the total energy consisting of static and vibrational components, employing different schemes: The quasiharmonic theory (QH), ).2 and).4 perturbation theory, all terms up to 0 ().4) of the improved self consistent phonon theory (ISC), the ring diagrams up to o ().4) (RING), the iteration scheme (ITER) derived from the Greens's function method and a scheme consisting of ITER plus the remaining contributions of 0 ().4) which are not included in ITER which we call E(FULL). We have calculated the lattice constant, the volume expansion, the isothermal and adiabatic bulk modulus, the specific heat at constant volume and at constant pressure, and the Gruneisen parameter from two different potential functions: Lennard-Jones and Aziz. The Aziz potential gives generally a better agreement with experimental data than the LJ potential for the QH, ).2, ).4 and E(FULL) schemes. When only a partial sum of the).4 diagrams is used in the calculations (e.g. RING and ISC) the LJ results are in better agreement with experiment. The iteration scheme brings a definitive improvement over the).2 PT for both potentials

    Massively parallel nanowell-based single-cell gene expression profiling

    No full text
    Abstract Background Technological advances have enabled transcriptome characterization of cell types at the single-cell level providing new biological insights. New methods that enable simple yet high-throughput single-cell expression profiling are highly desirable. Results Here we report a novel nanowell-based single-cell RNA sequencing system, ICELL8, which enables processing of thousands of cells per sample. The system employs a 5,184-nanowell-containing microchip to capture ~1,300 single cells and process them. Each nanowell contains preprinted oligonucleotides encoding poly-d(T), a unique well barcode, and a unique molecular identifier. The ICELL8 system uses imaging software to identify nanowells containing viable single cells and only wells with single cells are processed into sequencing libraries. Here, we report the performance and utility of ICELL8 using samples of increasing complexity from cultured cells to mouse solid tissue samples. Our assessment of the system to discriminate between mixed human and mouse cells showed that ICELL8 has a low cell multiplet rate (< 3%) and low cross-cell contamination. We characterized single-cell transcriptomes of more than a thousand cultured human and mouse cells as well as 468 mouse pancreatic islets cells. We were able to identify distinct cell types in pancreatic islets, including alpha, beta, delta and gamma cells. Conclusions Overall, ICELL8 provides efficient and cost-effective single-cell expression profiling of thousands of cells, allowing researchers to decipher single-cell transcriptomes within complex biological samples

    Additional file 4: Figure S4. of Massively parallel nanowell-based single-cell gene expression profiling

    No full text
    Heatmaps illustrating the total number of detected transcripts for each well selected for downstream processing. Data are for three microchips, each with 5184 wells arranged in a 72 × 72 square layout. Microchips 72,618 and 72,598 were used for profiling human and mouse cell lines (names of cell lines indicated in the plot). Microchip 72,625 was used for profiling pancreatic islets. For microchips with multiple dispensed samples, the dispense area for each sample is indicated. (PDF 93 kb

    Additional file 2: Figure S2. of Massively parallel nanowell-based single-cell gene expression profiling

    No full text
    Checkerboard assay. (a) Image of a microchip where the right half contains negative control master mix (NTC wells, n = 2520) and the left half contains lambda DNA master mix master (Positive wells, n = 1024) and negative control master mix (Test wells, n = 1496) in a checkerboard pattern. (b) Number of Test wells with signal, number of NTC wells with signal, and calculated misalignment rate for 11 MSNDs and 19 microchips. (PDF 1288 kb
    corecore