100 research outputs found
Intramolecular dynamics by photoelectron spectroscopy. I. Application to N2 +, HBr+, and HCN+
peer reviewedThe Fourier transform of an optical electronic spectrum leads to an autocorrelation function C(t) which describes the evolution in time of the wave packet created by the Franck-Condon transition, as it propagates on the potential energy surface of the electronic upper state. This correlation function is equal to the modulus of the overlap integral between the initial position of the wave packet and its instantaneous position at time. The original data resulting from an experimentally determined spectral profile must be corrected for finite energy resolution, rotational, and spin-orbit effects. The behavior of the system can then be followed up to a time of the order of 10 -l3 s, i.e., during the first few vibrations which follow immediately the electronic transition. The method is applied to photoelectron spectra and the results are compared to the available information on potential energy surfaces of ionized molecules, in order to study their unimolecular dissociation dynamics. In the case of the X 2Σg +, A 2Πu, and B 2Σu + states of N2 +, an oscillatory pattern is obtained for the correlation function. This indicates that the nuclear motion is taking place in a bound potential. Effects due to anharmonicity are visible in the case of the A 2Πu state. The study of the X 2Π state of HBr+ demonstrates the overwhelming importance of spin-orbit coupling when heavy atoms are present in the molecule. Finally, the method is applied to a polyatomic molecule. The potential energy surface of the B̃ 2Σ+ state of HCN+ is characterized by two energy minima separated by a saddle point. The corresponding band in the photoelectron spectrum is characterized by an irregular vibrational structure superimposed upon a broad continuum. A study of the correlation function shows that the wave packet undergoes a complicated, two-component motion: while oscillating across the saddle point, it spreads away at the same time along the dissociative degree of freedom. This gives information on the rate of energy redistribution within the molecule. © 1982 American Institute of Physics
Vibrational excitation of methylamine by electron impact in the 4.5-30 eV energy range
Vibrational excitation of gaseous methylamine induced by 4.5-30 eV energy electrons has been investigated by the electron energy loss spectroscopy. The ratios of the differential cross sections for excitation of the vibrational modes and for elastic scattering measured as a function of the electron kinetic energies show that at 15 and 30 eV, the vibrational excitation occurs mainly through a direct mechanism. The absolute vibrationally elastic and inelastic differential cross sections have been measured at these impact energies. The cross sections for the inelastic scattering are strongly dependent on the vibrational mode which is excited. © 1992 American Institute of Physics
Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV
The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) (1Δ←1Σ+) transition, with a new weak transition assigned to (1Σ−←1Σ+) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to 1Σ+ and 1Π transitions. Based on our recent measurements of differential cross sections for the optically allowed (1Σ+ and 1Π) transitions of COS by electron impact, the optical oscillator strength f0 value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)
Electronic excitation of furfural as probed by high-resolution vacuum ultraviolet spectroscopy, electron energy loss spectroscopy, and ab initio calculations
13 págs.; 7 figs.; 8 tabs.© 2015 AIP Publishing LLC. The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.F.F.S. and P.L.V. acknowledge the Portuguese Foundation
for Science and Technology (FCT-MEC) through Grant Nos.
SFRH/BPD/68979/2010 and SFRH/BSAB/105792/2014,
respectively, the research Grant Nos. PTDC/FIS-ATO/1832/
2012 and UID/FIS/00068/2013. P.L.V. also acknowledges
his Visiting Research Fellow position at Flinders University,
Adelaide, South Australia. The Patrimoine of the University
of Liège, the Fonds National de la Recherche Scientifique,
and the Fonds de la Recherche Fondamentale Collective of
Belgium have also supported this research. E.L. and R.F.C.N.
thank CNPq (Brazil) and the Science Without Borders
Programme for opportunities to study abroad. The authors
wish to acknowledge the beam time at the ISA synchrotron
at Aarhus University, Denmark. The research leading to these
results has received funding from the European Community’s
Seventh Framework Programme (Grant No. FP7/2007-2013)
CALIPSO under Grant Agreement No. 312284. D.B.J.
thanks the Australian Research Council for financial support
provided through a Discovery Early Career Research Award.
M.J.B. also thanks the Australian Research Council for some
financial support, while M.J.B. and M.C.A.L. acknowledge the
Brazilian agencies CNPq and FAPEMIG for financial support.
F.B. and G.G. acknowledge partial financial support from the
Spanish Ministry MINECO (Project No. FIS2012-31230) and
the EU COST Action No. CM1301 (CELINA). Finally, R.F.C.,
M.T.do N.V., M.H.F.B., and M.A.P.L. acknowledge support
from the Brazilian agency CNPq.Peer Reviewe
Iodopentafluorobenzene: Electronic state spectroscopy by high resolution vacuum ultraviolet photoabsorption and photoelectron spectroscopy
The electronic transitions of iodopentafluorobenzene (C6F5I) have been investigated experimentally for the first time by high-resolution photoabsorption spectroscopy in the energy range 3.6 – 10.7 eV. The character of the valence excited states has been discussed taking into account calculations available in the literature. The ionisation energies of the molecule in its electronic ground state have been measured by high-resolution He(I) photoelectron spectroscopy. The energies of the ionic bands are shifted by about 0.5 eV compared to the earliest literature values but they agree with the most recently published measurements. All the spectra presented in this paper represent highest resolution measurements of their kind for iodopentafluorobenzene. The absolute photoabsorption cross sections have been used to model photolysis rates and residence times in the terrestrial atmosphere
Isobutyl acetate: electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations
The high-resolution vacuum ultraviolet photoabsorption spectrum of isobutyl acetate, C6H12O2, is presented here and was measured over the energy range 4.3–10.8 eV (290–115 nm). Valence and Rydberg transitions with their associated vibronic series have been observed in the photoabsorption spectrum and are assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. The measured photoabsorption cross sections have been used to calculate the photolysis lifetime of this ester in the Earth’s upper atmosphere (20–50 km). Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of isobutyl acetate and are compared with a photoelectron spectrum (from 9.5 to 16.7 eV), recorded for the first time. Vibrational structure is observed in the first photoelectron band of this molecule
Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations
The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C2H5OCHO, yet reported is presented over the wavelength range 115.0-275.5 nm (10.75-4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20-50 km)
Photoelectron spectroscopy of a series of acetate and propionate esters
The electronic state and photoionization spectroscopy of a series of acetate esters: methyl acetate, isopropyl acetate, butyl acetate and pentyl acetate as well as two propionates: methyl propionate and ethyl propionate, have been determined using vacuum-ultraviolet photoelectron spectroscopy. These experimental investigations are complemented by ab initio calculations. The measured first adiabatic and vertical ionization energies were determined as: 10.21 and 10.45 eV for methyl acetate, 9.99 and 10.22 eV for isopropyl acetate, 10.07 and 10.26 eV for butyl acetate, 10.01 and 10.22 eV for pentyl acetate, 10.16 and 10.36 eV for methyl propionate and 9.99 and 10.18 eV for ethyl propionate. For the four smaller esters vibrational transitions were calculated and compared with those identified in the photoelectron spectrum, revealing the most distinctive ones to be a C–O stretch combined with a C[dbnd]O stretch. The ionization energies of methyl and ethyl esters as well as for a series of formates and acetates were compared showing a clear dependence of the value of the ionization energy on the size of the molecule with very little influence of its conformation
Electronic state spectroscopy by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy and ab initio calculations of ethyl acetate
Abstract: The high-resolution vacuum ultraviolet photoabsorption spectrum of ethyl acetate,C4H8O2, is presented over the energy range 4.5−10.7 eV (275.5−116.0 nm). Valence and Rydberg transitionsand their associated vibronic series observed in the photoabsorption spectrum, have beenassigned in accordance with new ab initio calculations of the vertical excitation energiesand oscillator strengths. Also, the photoabsorption cross sections have been used tocalculate the photolysis lifetime of this ester in the upper stratosphere(20−50 km). Calculationshave also been carried out to determine the ionisation energies and fine structure of thelowest ionic state of ethyl acetate and are compared with a newly recorded photoelectronspectrum (from 9.5 to 16.7 eV). Vibrational structure is observed in the firstphotoelectron band of this molecule for the first time
- …