1,789 research outputs found
Computational algebraic methods in efficient estimation
A strong link between information geometry and algebraic statistics is made
by investigating statistical manifolds which are algebraic varieties. In
particular it it shown how first and second order efficient estimators can be
constructed, such as bias corrected Maximum Likelihood and more general
estimators, and for which the estimating equations are purely algebraic. In
addition it is shown how Gr\"obner basis technology, which is at the heart of
algebraic statistics, can be used to reduce the degrees of the terms in the
estimating equations. This points the way to the feasible use, to find the
estimators, of special methods for solving polynomial equations, such as
homotopy continuation methods. Simple examples are given showing both equations
and computations. *** The proof of Theorem 2 was corrected by the latest
version. Some minor errors were also corrected.Comment: 21 pages, 5 figure
Local Thermometry of Neutral Modes on the Quantum Hall Edge
A system of electrons in two dimensions and strong magnetic fields can be
tuned to create a gapped 2D system with one dimensional channels along the
edge. Interactions among these edge modes can lead to independent transport of
charge and heat, even in opposite directions. Measuring the chirality and
transport properties of these charge and heat modes can reveal otherwise hidden
structure in the edge. Here, we heat the outer edge of such a quantum Hall
system using a quantum point contact. By placing quantum dots upstream and
downstream along the edge of the heater, we can measure both the chemical
potential and temperature of that edge to study charge and heat transport,
respectively. We find that charge is transported exclusively downstream, but
heat can be transported upstream when the edge has additional structure related
to fractional quantum Hall physics.Comment: 24 pages, 18 figure
Functional significance may underlie the taxonomic utility of single amino acid substitutions in conserved proteins
We hypothesized that some amino acid substitutions in conserved proteins that are strongly fixed by critical functional roles would show lineage-specific distributions. As an example of an archetypal conserved eukaryotic protein we considered the active site of ß-tubulin. Our analysis identified one amino acid substitution—ß-tubulin F224—which was highly lineage specific. Investigation of ß-tubulin for other phylogenetically restricted amino acids identified several with apparent specificity for well-defined phylogenetic groups. Intriguingly, none showed specificity for “supergroups” other than the unikonts. To understand why, we analysed the ß-tubulin Neighbor-Net and demonstrated a fundamental division between core ß-tubulins (plant-like) and divergent ß-tubulins (animal and fungal). F224 was almost completely restricted to the core ß-tubulins, while divergent ß-tubulins possessed Y224. Thus, our specific example offers insight into the restrictions associated with the co-evolution of ß-tubulin during the radiation of eukaryotes, underlining a fundamental dichotomy between F-type, core ß-tubulins and Y-type, divergent ß-tubulins. More broadly our study provides proof of principle for the taxonomic utility of critical amino acids in the active sites of conserved proteins
An SU(N) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling
The Hubbard model, containing only the minimum ingredients of nearest
neighbor hopping and on-site interaction for correlated electrons, has
succeeded in accounting for diverse phenomena observed in solid-state
materials. One of the interesting extensions is to enlarge its spin symmetry to
SU(N>2), which is closely related to systems with orbital degeneracy. Here we
report a successful formation of the SU(6) symmetric Mott insulator state with
an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical
lattice. Besides the suppression of compressibility and the existence of charge
excitation gap which characterize a Mott insulating phase, we reveal an
important difference between the cases of SU(6) and SU(2) in the achievable
temperature as the consequence of different entropy carried by an isolated
spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful
for investigating exotic quantum phases of SU(N) Hubbard system at extremely
low temperatures.Comment: 20 pages, 6 figures, to appear in Nature Physic
Activation of mGluR5 Induces Rapid and Long-Lasting Protein Kinase D Phosphorylation in Hippocampal Neurons
Metabotropic glutamate receptors (mGluRs), including mGluR5, play a central role in regulating the strength and plasticity of synaptic connections in the brain. However, the signaling pathways that connect mGluRs to their downstream effectors are not yet fully understood. Here, we report that stimulation of mGluR5 in hippocampal cultures and slices results in phosphorylation of protein kinase D (PKD) at the autophosphorylation site Ser-916. This phosphorylation event occurs within 30 s of stimulation, persists for at least 24 h, and is dependent on activation of phospholipase C and protein kinase C. Our data suggest that activation of PKD may represent a novel signaling pathway linking mGluR5 to its downstream targets. These findings have important implications for the study of the molecular mechanisms underlying mGluR-dependent synaptic plasticity.Howard Hughes Medical InstituteFRAXA Research FoundationNational Institute of Mental Health (U.S.)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.
Electroweak baryogenesis
Electroweak baryogenesis (EWBG) remains a theoretically attractive and
experimentally testable scenario for explaining the cosmic baryon asymmetry. We
review recent progress in computations of the baryon asymmetry within this
framework and discuss their phenomenological consequences. We pay particular
attention to methods for analyzing the electroweak phase transition and
calculating CP-violating asymmetries, the development of Standard Model
extensions that may provide the necessary ingredients for EWBG, and searches
for corresponding signatures at the high energy, intensity, and cosmological
frontiers.Comment: 42 pages, 13 figures, invited review for the New Journal of Physics
focus issue on 'Origin of Matter
Differential expression analysis for sequence count data
*Motivation:* High-throughput nucleotide sequencing provides quantitative readouts in assays for RNA expression (RNA-Seq), protein-DNA binding (ChIP-Seq) or cell counting (barcode sequencing). Statistical inference of differential signal in such data requires estimation of their variability throughout the dynamic range. When the number of replicates is small, error modelling is needed to achieve statistical power.

*Results:* We propose an error model that uses the negative binomial distribution, with variance and mean linked by local regression, to model the null distribution of the count data. The method controls type-I error and provides good detection power. 

*Availability:* A free open-source R software package, _DESeq_, is available from the Bioconductor project and from "http://www-huber.embl.de/users/anders/DESeq":http://www-huber.embl.de/users/anders/DESeq
Recent advances in electronic structure theory and their influence on the accuracy of ab initio potential energy surfaces
Recent advances in electronic structure theory and the availability of high speed vector processors have substantially increased the accuracy of ab initio potential energy surfaces. The recently developed atomic natural orbital approach for basis set contraction has reduced both the basis set incompleteness and superposition errors in molecular calculations. Furthermore, full CI calculations can often be used to calibrate a CASSCF/MRCI approach that quantitatively accounts for the valence correlation energy. These computational advances also provide a vehicle for systematically improving the calculations and for estimating the residual error in the calculations. Calculations on selected diatomic and triatomic systems will be used to illustrate the accuracy that currently can be achieved for molecular systems. In particular, the F+H2 yields HF+H potential energy hypersurface is used to illustrate the impact of these computational advances on the calculation of potential energy surfaces
Recommended from our members
Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
Planet Populations as a Function of Stellar Properties
Exoplanets around different types of stars provide a window into the diverse
environments in which planets form. This chapter describes the observed
relations between exoplanet populations and stellar properties and how they
connect to planet formation in protoplanetary disks. Giant planets occur more
frequently around more metal-rich and more massive stars. These findings
support the core accretion theory of planet formation, in which the cores of
giant planets form more rapidly in more metal-rich and more massive
protoplanetary disks. Smaller planets, those with sizes roughly between Earth
and Neptune, exhibit different scaling relations with stellar properties. These
planets are found around stars with a wide range of metallicities and occur
more frequently around lower mass stars. This indicates that planet formation
takes place in a wide range of environments, yet it is not clear why planets
form more efficiently around low mass stars. Going forward, exoplanet surveys
targeting M dwarfs will characterize the exoplanet population around the lowest
mass stars. In combination with ongoing stellar characterization, this will
help us understand the formation of planets in a large range of environments.Comment: Accepted for Publication in the Handbook of Exoplanet
- …
