7,899 research outputs found

    High temperature thermal conductivity of 2-leg spin-1/2 ladders

    Full text link
    Based on numerical simulations, a study of the high temperature, finite frequency, thermal conductivity κ(ω)\kappa(\omega) of spin-1/2 ladders is presented. The exact diagonalization and a novel Lanczos technique are employed.The conductivity spectra, analyzed as a function of rung coupling, point to a non-diverging dcdc-limit but to an unconventional low frequency behavior. The results are discussed with perspective recent experiments indicating a significant magnetic contribution to the energy transport in quasi-one dimensional compounds.Comment: 4 pages, 4 figure

    Information on the Pion Distribution Amplitude from the Pion-Photon Transition Form Factor with the Belle and BaBar Data

    Full text link
    The pion-photon transition form factor (TFF) provides strong constraints on the pion distribution amplitude (DA). We perform an analysis of all existing data (CELLO, CLEO, BaBar, Belle) on the pion-photon TFF by means of light-cone pQCD approach in which we include the next-to-leading order correction to the valence-quark contribution and estimate the non-valence-quark contribution by a phenomenological model based on the TFF's limiting behavior at both Q20Q^2\to 0 and Q2Q^2\to\infty. At present, the pion DA is not definitely determined, it is helpful to have a pion DA model that can mimic all the suggested behaviors, especially to agree with the constraints from the pion-photon TFF in whole measured region within a consistent way. For the purpose, we adopt the conventional model for pion wavefunction/DA that has been constructed in our previous paper \cite{hw1}, whose broadness is controlled by a parameter BB. We fix the DA parameters by using the CELLO, CLEO, BABAR and Belle data within the smaller Q2Q^2 region (Q215Q^2 \leq 15 GeV2^2), where all the data are consistent with each other. And then the pion-photon TFF is extrapolated into larger Q2Q^2 region. We observe that the BABAR favors B=0.60B=0.60 which has the behavior close to the Chernyak-Zhitnitsky DA, whereas the recent Belle favors B=0.00B=0.00 which is close to the asymptotic DA. We need more accurate data at large Q2Q^2 region to determine the precise value of BB, and the definite behavior of pion DA can be concluded finally by the consistent data in the coming future.Comment: 6 pages, 5 figures. Slightly changed and references update

    Asymmetry of Strange Sea in Nucleons

    Full text link
    Based on the finite-temperature field theory, we evaluate the medium effects in nucleon which can induce an asymmetry between quarks and antiquarks of the strange sea. The short-distance effects determined by the weak interaction can give rise to δmΔmsΔmsˉ\delta m\equiv \Delta m_s-\Delta m_{\bar s} where Δms(sˉ)\Delta m_{s(\bar s)} is the medium-induced mass of strange quark by a few KeV at most, but the long-distance effects by strong interaction are sizable. Our numerical results show that there exists an obvious mass difference between strange and anti-strange quarks, as large as 10-100 MeV.Comment: 15 latex pages, 3 figures, to appear in PR

    Two-Color Coherent Photodissociation of Nitrogen Oxide in Intense Laser Fields

    Full text link
    A simple one-dimensional semi-classical model with a Morse potential is used to investigate the possibility of two-color infrared multi-photon dissociation of vibrationally excited nitrogen oxide. The amplitude ratio effects and adiabatic effects are investigated. Some initial states are found to have thresholds smaller than expected from single-mode considerations and multiple thresholds exist for initial states up to 32. PACS: 42.50.HzComment: 3 pages, old papers, add source files to replace original postscrip

    Aerodynamic design and analysis of a highly loaded turbine exhaust

    Get PDF
    The aerodynamic design and analysis of a turbine exhaust volute manifold is described. This turbine exhaust system will be used with an advanced gas generator oxidizer turbine designed for very high specific work. The elevated turbine stage loading results in increased discharge Mach number and swirl velocity which, along with the need for minimal circumferential variation of fluid properties at the turbine exit, represent challenging volute design requirements. The design approach, candidate geometries analyzed, and steady state/unsteady CFD analysis results are presented

    Evidence of local superconductivity in granular Bi nanowires fabricated by electrodeposition

    Full text link
    An unusual enhancement of resistance (i.e., superresistivity) below a certain characteristic temperature Tsr was observed in granular Bi nanowires. This superresistive state was found to be dependent on the applied magnetic field (H) as well as the excitation current (I). The suppression of Tsr by magnetic field resembles that of a superconductor. The observed superresistivity appears to be related to the nucleation of local superconductivity inside the granular nanowire without long-range phase coherence. The phenomenon is reminiscent of the Bose-insulator observed previously in ultra thin two-dimensional (2D) superconducting films and 3D percolative superconducting films.Comment: 11 pages, 5 figures. submitted to PR

    Optical Interferometry of early-type stars with PAVO@CHARA. I. Fundamental stellar properties

    Full text link
    We present interferometric observations of 7 main-sequence and 3 giant stars with spectral types from B2 to F6 using the PAVO beam combiner at the CHARA array. We have directly determined the angular diameters for these objects with an average precision of 2.3%. We have also computed bolometric fluxes using available photometry in the visible and infrared wavelengths, as well as space-based ultraviolet spectroscopy. Combined with precise \textit{Hipparcos} parallaxes, we have derived a set of fundamental stellar properties including linear radius, luminosity and effective temperature. Fitting the latter to computed isochrone models, we have inferred masses and ages of the stars. The effective temperatures obtained are in good agreement (at a 3% level) with nearly-independent temperature estimations from spectroscopy. They validate recent sixth-order polynomial (B-V)-TeffT_\mathrm{eff} empirical relations \citep{Boyajian2012a}, but suggest that a more conservative third-order solution \citep{vanBelle2009} could adequately describe the (V-K)-TeffT_\mathrm{eff} relation for main-sequence stars of spectral type A0 and later. Finally, we have compared mass values obtained combining surface gravity with inferred stellar radius (\textit{gravity mass}) and as a result of the comparison of computed luminosity and temperature values with stellar evolutionary models (\textit{isochrone mass}). The strong discrepancy between isochrone and gravity mass obtained for one of the observed stars, γ\gamma\,Lyr, suggests that determination of the stellar atmosphere parameters should be revised.Comment: 13 pages, 9 figures, accepted for publication in MNRA
    corecore