407 research outputs found

    Infrared recombination lasers pumped by low energy Nd: YAG and excimer lasers

    Get PDF
    24 infrared laser lines on atomic and ionic transitions have been observed in recombining plasmas by vaporizing and ionizing Cd, Pb, Sn, Zn, and Mg with low energy Nd:YAG or excimer pump-lasers. For operation and optimization of the recombination lasers separated plasma spots and a plasma confinement have been used. The operation of shorter wavelength systems by isoelectronic scaling is discussed

    Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress

    Get PDF
    Acknowledgments We thank Alexander Johnson (yhb1D/D), Karl Kuchler (sodD/D mutants), Janet Quinn (hog1D/D, hog1/cap1D/D, trx1D/D) and Peter Staib (ssu1D/D) for providing mutant strains. We acknowledge helpful discussions with our colleagues from the Microbial Pathogenicity Mechanisms Department, Fungal Septomics and the Microbial Biochemistry and Physiology Research Group at the Hans Kno¨ll Institute (HKI), specially Ilse D. Jacobsen, Duncan Wilson, Sascha Brunke, Lydia Kasper, Franziska Gerwien, Sea´na Duggan, Katrin Haupt, Kerstin Hu¨nniger, and Matthias Brock, as well as from our partners in the FINSysB Network. Author Contributions Conceived and designed the experiments: PM HW IMB AJPB OK BH. Performed the experiments: PM CD HW. Analyzed the data: PM HW IMB AJPB OK BH. Wrote the paper: PM HW OK AJPB BH.Peer reviewedPublisher PD

    Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invasion of host tissue by the human fungal pathogen <it>Candida albicans </it>is an important step during the development of candidosis. However, not all <it>C. albicans </it>strains possess the same invasive and virulence properties. For example, the two clinical isolates SC5314 and ATCC10231 differ in their ability to invade host tissue and cause experimental infections. Strain SC5314 is invasive whereas strain ATCC10231 is non-invasive and strongly attenuated in virulence compared to SC5314. In this study we compare the <it>in vitro </it>phenotypic, transcriptional and genomic profiles of these two widely used laboratory strains in order to determine the principal biological and genetic properties responsible for their differential virulence.</p> <p>Results</p> <p>In all media tested, the two strains showed the same metabolic flexibility, stress resistance, adhesion properties and hydrolytic enzyme secretion <it>in vitro</it>. However, differences were observed in response to cell-surface disturbing agents and alkaline pH. Furthermore, reduced hyphal formation in strain ATCC10231 under certain conditions correlated with reduced invasive properties in an <it>in vitro </it>invasion assay and a reduced ability to invade epithelial tissue. Despite these diverse phenotypic properties, no substantial genomic differences were detected by comparative genome hybridisation within the open reading frames. However, <it>in vitro </it>transcriptional profiling displayed major differences in the gene expression of these two strains, even under normal <it>in vitro </it>growth conditions.</p> <p>Conclusion</p> <p>Our data suggest that the reason for differential virulence of <it>C. albicans </it>strains is not due to the absence of specific genes, but rather due to differences in the expression, function or activity of common genes.</p

    In vivo induction of neutrophils chemotaxis by secretory aspartyl proteinases of Candida albicans

    Get PDF
    Secretory aspartyl proteinases (Saps) of Candida albicans are key virulence traits which cause inflammasome-dependent, aseptic inflammation in a mouse model of vaginitis. In this paper, neutrophil migration in response to Sap2, Sap6 and chemo-attractive products released from Sap-treated vaginal epithelium was measured in vitro, ex vivo and in vivo. Our results show that Sap2 and Sap6 induce neutrophil migration and production of potent chemoattractive chemokines such as IL-8 and MIP-2 by vaginal epithelial cells. Our data suggest that at least part of MIP-2 production depends upon IL-1β activity. The vaginal fluid of Candida-infected mice contained a heat-labile inhibitor of neutrophil candidacidal activity that was absent from the vaginal fluid of Sap-treated mice. Overall, our data provide additional information on the capacity of C. albicans Saps to cause aseptic vaginal inflammation and highlight the potential role of some chemokines released from vaginal epithelial cells in this phenomenon

    Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response

    Get PDF
    We recently demonstrated that the secreted aspartyl proteinases (Saps), Sap2 and Sap6, of Candida albicans have the potential to induce the canonical activation of NLRP3-inflammasome leading to the secretion of IL-1β and IL-18 via caspase-1 activation. We also observed that the activation of caspase-1 is partially independent from the NLRP3 activation pathway. In this study, we examined whether Sap2 and Sap6 are also able to activate the noncanonical inflammasome pathway in murine macrophages. Our data show that both, Sap2 and Sap6, can activate caspase-11 through type I IFN production. Caspase-11 concurs to activate caspase-1 with subsequent increase of IL-1β secretion. Endocytosis and internalization of Saps are required for the induction of type I IFN production, that is essential for induction of noncanonical inflammasome activation. Our study indicates a sophisticated interplay between caspase-1 and caspase-11 that connects canonical and noncanonical pathways of inflammasome activation in response to C. albicans Saps

    Candida species exhibit differential in vitro hemolytic activities

    Get PDF
    A total of 80 Candida isolates representing 14 species were examined for their respective responses to an in vitro hemolytic test. A modification of a previously described plate assay system where the yeasts are incubated on glucose (3%)-enriched sheep blood agar in a carbon dioxide (5%)-rich environment for 48 h was used to evaluate the hemolytic activity. A group of eight Candida species which included Candida albicans (15 isolates), C. dubliniensis (2), C. kefyr (2), C. krusei (4), C. zeylanoides (1), C. glabrata (34), C. tropicalis (5), and C. lusitaniae (2) demonstrated both alpha and beta hemolysis at 48 h postinoculation. Only alpha hemolysis was detectable in four Candida species, viz., C. famata (3), C. guilliermondii (4), C. rugosa (1), and C. utilis (1), while C. parapsilosis (5) and C. pelliculosa (1) failed to demonstrate any hemolytic activity after incubation for 48 h or longer. This is the first study to demonstrate the variable expression profiles of hemolysins by different Candida species.published_or_final_versio

    Candida albicans Mrv8, is involved in epithelial damage and biofilm formation

    Get PDF
    This is the final version. Available on open access from Oxford University Press via the DOI in this recordCandida albicans is the most common human fungal pathogen that can cause superficial and deep-seated infections in susceptible individuals. Despite its medical importance, the vast majority of C. albicans genes remain of unknown function. Here, we report a role for the lineage-specific gene, MRV8, in host pathogen interactions, mycelial microcolony maturation and biofilm formation. In silico analysis indicated that MRV8 encodes a four-pass transmembrane protein unique to the closely related pathogens C. albicans and Candida dubliniensis. Deletion of MRV8 did not affect C. albicans adherence to, or initial invasion into human oral epithelia, but inhibited mycelial development and strongly reduced epithelial damage. mrv8Δ/Δ cells exhibited a media-dependent defect in biofilm formation and mutant biofilm metabolic activity was enhanced by cyclosporin A. mrv8Δ/Δ biofilms were more tolerant to treatment with caspofungin, but not to fluconazole or amphotericin B. Co-stimulation with calcium chloride and calcofluor white rescued biofilm growth in the presence of caspofungin, and this rescue-effect was Mrv8-dependent. Together, our data demonstrate an important role for a lineage-specific gene (MRV8) in C. albicans biofilm formation, drug tolerance and host-pathogen interactions.São Paulo Research Foundation (FAPESP)Coordination for the Improvement of Personal of Superior Level (CAPES)/Deutscher Akademischer Austauschdienst (DAAD)International Leibniz Research School for Microbial and Biomolecular Interactions (ILRS)Center for Sepsis Control and Care (CSCC)Wellcome TrustMedical Research Council (MRC)University of ExeterEuropean Union FP
    corecore